372 resultados para Ecological dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterns of connectivity among local populations influence the dynamics of regional systems, but most ecological models have concentrated on explaining the effect of connectivity on local population structure using dynamic processes covering short spatial and temporal scales. In this study, a model was developed in an extended spatial system to examine the hypothesis that long term connectivity levels among local populations are influenced by the spatial distribution of resources and other habitat factors. The habitat heterogeneity model was applied to local wild rabbit populations in the semi-arid Mitchell region of southern central Queensland (the Eastern system). Species' specific population parameters which were appropriate for the rabbit in this region were used. The model predicted a wide range of long term connectivity levels among sites, ranging from the extreme isolation of some sites to relatively high interaction probabilities for others. The validity of model assumptions was assessed by regressing model output against independent population genetic data, and explained over 80% of the variation in the highly structured genetic data set. Furthermore, the model was robust, explaining a significant proportion of the variation in the genetic data over a wide range of parameters. The performance of the habitat heterogeneity model was further assessed by simulating the widely reported recent range expansion of the wild rabbit into the Mitchell region from the adjacent, panmictic Western rabbit population system. The model explained well the independently determined genetic characteristics of the Eastern system at different hierarchic levels, from site specific differences (for example, fixation of a single allele in the population at one site), to differences between population systems (absence of an allele in the Eastern system which is present in all Western system sites). The model therefore explained the past and long term processes which have led to the formation and maintenance of the highly structured Eastern rabbit population system. Most animals exhibit sex biased dispersal which may influence long term connectivity levels among local populations, and thus the dynamics of regional systems. When appropriate sex specific dispersal characteristics were used, the habitat heterogeneity model predicted substantially different interaction patterns between female-only and combined male and female dispersal scenarios. In the latter case, model output was validated using data from a bi-parentally inherited genetic marker. Again, the model explained over 80% of the variation in the genetic data. The fact that such a large proportion of variability is explained in two genetic data sets provides very good evidence that habitat heterogeneity influences long term connectivity levels among local rabbit populations in the Mitchell region for both males and females. The habitat heterogeneity model thus provides a powerful approach for understanding the large scale processes that shape regional population systems in general. Therefore the model has the potential to be useful as a tool to aid in the management of those systems, whether it be for pest management or conservation purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although current assessments of agricultural management practices on soil organic C (SOC) dynamics are usually conducted without any explicit consideration of limits to soil C storage, it has been hypothesized that the SOC pool has an upper, or saturation limit with respect to C input levels at steady state. Agricultural management practices that increase C input levels over time produce a new equilibrium soil C content. However, multiple C input level treatments that produce no increase in SOC stocks at equilibrium show that soils have become saturated with respect to C inputs. SOC storage of added C input is a function of how far a soil is from saturation level (saturation deficit) as well as C input level. We tested experimentally if C saturation deficit and varying C input levels influenced soil C stabilization of added C-13 in soils varying in SOC content and physiochemical characteristics. We incubated for 2.5 years soil samples from seven agricultural sites that were closer to (i.e., A-horizon) or further from (i.e., C-horizon) their C saturation limit. At the initiation of the incubations, samples received low or high C input levels of 13 C-labeled wheat straw. We also tested the effect of Ca addition and residue quality on a subset of these soils. We hypothesized that the proportion of C stabilized would be greater in samples with larger C Saturation deficits (i.e., the C- versus A-horizon samples) and that the relative stabilization efficiency (i.e., Delta SCC/Delta C input) would decrease as C input level increased. We found that C saturation deficit influenced the stabilization of added residue at six out of the seven sites and C addition level affected the stabilization of added residue in four sites, corroborating both hypotheses. Increasing Ca availability or decreasing residue quality had no effect on the stabilization of added residue. The amount of new C stabilized was significantly related to C saturation deficit, supporting the hypothesis that C saturation influenced C stabilization at all our sites. Our results suggest that soils with low C contents and degraded lands may have the greatest potential and efficiency to store added C because they are further from their saturation level. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key resource areas (KRAs), defined as dry season foraging zones for herbivores, were studied relative to the more extensive outlying rangeland areas (non-KRAs) in Kenya. Field surveys with pastoralists, ranchers, scientists and government officials delineated KRAs on the ground. Identified KRAs were mapped based on global positioning and local experts' information on KRAs accessibility and ecological attributes. Using the map of known KRAs and non-KRAs, we examined characteristics of soils, climate, topography, land use/cover attributes at KRAs relative to non-KRAs. How and why do some areas (KRAs) support herbivores during droughts when forage is scarce in other areas of the landscape? We hypothesized that KRAs have fundamental ecological and socially determined attributes that enable them to provide forage during critical times and we sought to characterize some of those attributes in this study. At the landscape level, KRAs took different forms based on forage availability during the dry season but generally occurred in locations of the landscape with aseasonal water availability and/or difficult to access areas during wet season forage abundance. Greenness trends for KRAs versus non-KRAs were evaluated with a 22-year dataset of Normalized Difference Vegetation Index (NDVI). Field surveys of KRAs provided qualitative information on KRAs as dry season foraging zones. At the scale of the study, soil attributes did not significantly differ for KRAs compared to non-KRAs. Slopes of KRA were generally steeper compared to non-KRAs and elevation was higher at KRAs. Field survey respondents indicated that animals and humans generally avoid difficult to access hilly areas using them only when all other easily accessible rangeland is depleted of forage during droughts. Understanding the nature of KRAs will support identification, protection and restoration of critical forage hotspots for herbivores by strengthening rangeland inventory, monitoring, policy formulation, and conservation efforts to improve habitats and human welfare. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current estimates of soil C storage potential are based on models or factors that assume linearity between C input levels and C stocks at steady-state, implying that SOC stocks could increase without limit as C input levels increase. However, some soils show little or no increase in steady-state SOC stock with increasing C input levels suggesting that SOC can become saturated with respect to C input. We used long-term field experiment data to assess alternative hypotheses of soil carbon storage by three simple models: a linear model (no saturation), a one-pool whole-soil C saturation model, and a two-pool mixed model with C saturation of a single C pool, but not the whole soil. The one-pool C saturation model best fit the combined data from 14 sites, four individual sites were best-fit with the linear model, and no sites were best fit by the mixed model. These results indicate that existing agricultural field experiments generally have too small a range in C input levels to show saturation behavior, and verify the accepted linear relationship between soil C and C input used to model SOM dynamics. However, all sites combined and the site with the widest range in C input levels were best fit with the C-saturation model. Nevertheless, the same site produced distinct effective stabilization capacity curves rather than an absolute C saturation level. We conclude that the saturation of soil C does occur and therefore the greatest efficiency in soil C sequestration will be in soils further from C saturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt- and clay-sized soil fractions. Microaggegrate-derived and easily dispersed silt- and clay-sized fractions were isolated from surface soil samples collected from six long-term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non-hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no-till > conventional-till at all sites. Concentrations of non-hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt-sized fractions compared with the clay-sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of potential and actual C sequestration require areal information about various types of management activities. Forest surveys, land use data, and agricultural statistics contribute information enabling calculation of the impacts of current and historical land management on C sequestration in biomass (in forests) or in soil (in agricultural systems). Unfortunately little information exists on the distribution of various management activities that can impact soil C content in grassland systems. Limited information of this type restricts our ability to carry out bottom-up estimates of the current C balance of grasslands or to assess the potential for grasslands to act as C sinks with changes in management. Here we review currently available information about grassland management, how that information could be related to information about the impacts of management on soil C stocks, information that may be available in the future, and needs that remain to be filled before in-depth assessments may be carried out. We also evaluate constraints induced by variability in information sources within and between countries. It is readily apparent that activity data for grassland management is collected less frequently and on a coarser scale than data for forest or agricultural inventories and that grassland activity data cannot be directly translated into IPCC-type factors as is done for IPCC inventories of agricultural soils. However, those management data that are available can serve to delineate broad-scale differences in management activities within regions in which soil C is likely to change in response to changes in management. This, coupled with the distinct possibility of more intensive surveys planned in the future, may enable more accurate assessments of grassland C dynamics with higher resolution both spatially and in the number management activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants subjected to increases in the supply of resource(s) limiting growth may allocate more of those resources to existing leaves, increasing photosynthetic capacity, and/or to production of more leaves, increasing whole-plant photosynthesis. The responses of three populations of the alpine willow, Salix glauca, growing along an alpine topographic sequence representing a gradient in soil moisture and organic matter, and thus potential N supply, to N amendments, were measured over two growing seasons, to elucidate patterns of leaf versus shoot photosynthetic responses. Leaf-(foliar N, photosynthesis rates, photosynthetic N-use efficiency) and shoot-(leaf area per shoot, number of leaves per shoot, stem weight, N resorption efficiency) level measurements were made to examine the spatial and temporal variation in these potential responses to increased N availability. The predominant response of the willows to N fertilization was at the shoot-level, by production of greater leaf area per shoot. Greater leaf area occurred due to production of larger leaves in both years of the experiment and to production of more leaves during the second year of fertilization treatment. Significant leaf-level photosynthetic response occurred only during the first year of treatment, and only in the dry meadow population. Variation in photosynthesis rates was related more to variation in stomatal conductance than to foliar N concentration. Stomatal conductance in turn was significantly related to N fertilization. Differences among the populations in photosynthesis, foliar N, leaf production, and responses to N fertilization indicate N availability may be lowest in the dry meadow population, and highest in the ridge population. This result is contrary to the hypothesis that a gradient of plant available N corresponds with a snowpack/topographic gradient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—The role of cardiopulmonary signals in the dynamics of wavefront aberrations in the eye has been examined. Synchronous measurement of the eye’s wavefront aberrations, cardiac function, blood pulse, and respiration signals were taken for a group of young, healthy subjects. Two focusing stimuli, three breathing patterns, as well as natural and cycloplegic eye conditions were examined. A set of tools, including time–frequency coherence and its metrics, has been proposed to acquire a detailed picture of the interactions of the cardiopulmonary system with the eye’s wavefront aberrations. The results showed that the coherence of the blood pulse and its harmonics with the eye’s aberrations was, on average, weak (0.4 ± 0.15), while the coherence of the respiration signal with eye’s aberrations was, on average, moderate (0.53 ± 0.14). It was also revealed that there were significant intervals during which high coherence occurred. On average, the coherence was high (>0.75) during 16% of the recorded time, for the blood pulse, and 34% of the time for the respiration signal. A statistically significant decrease in average coherence was noted for the eye’s aberrations with respiration in the case of fast controlled breathing (0.5 Hz). The coherence between the blood pulse and the defocus was significantly larger for the far target than for the near target condition. After cycloplegia, the coherence of defocus with the blood pulse significantly decreased, while this was not the case for the other aberrations. There was also a noticeable, but not statistically significant, increase in the coherence of the comatic term and respiration in that case. By using nonstationary measures of signal coherence, a more detailed picture of interactions between the cardiopulmonary signals and eye’s wavefront aberrations has emerged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staff and students of the Surveying and Spatial Sciences discipline at QUT have worked collaboratively with the Institute of Sustainable Resources in the creation and development of spatial information layers and infrastructure to support multi-disciplinary research efforts at the Samford Ecological Research Facility (SERF). The SERF property is unique in that it provides staff and students with a semi-rural controlled research base for multiple users. This paper aims to describe the development of a number of spatial information layers and network of survey monuments that assist and support research infrastructure at SERF. A brief historical background about the facility is presented along with descriptions of the surveying and mapping activities undertaken. These broad ranging activities include introducing monument infrastructure and a geodetic control network; surveying activities for aerial photography ground-control targets including precise levelling with barcode instruments; development of an ortho-rectified image spatial information layer; Real-Time-Kinematic Global Positioning Systems (RTK-GPS) surveying for constructing 100metre confluence points/monuments to support science-based disciplines to undertake environmental research transects and long-term ecological sampling; and real-world learning initiative to assist with water engineering projects and student experiential learning. The spatial information layers and physical infrastructure have been adopted by two specific yet diverse user groups with an interest in the long-term research focus of SERF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The notion of routines as mechanisms for achieving stability and change in organisations is well established in the organisational theory literature (Becker, 2004). However the relationship between the dynamics of selection, adaptation and retention and the increase or decrease in the varieties of routines which are the result of these processes, is not as well established theoretically or empirically. This paper investigates the processes associated with the evolution of an inter-organisational routine over time. The paper contributes to theory by advancing a conceptual clarification between the dynamics of organisational routines which produce variation, and the varieties of routines which are generated as a result of such processes; and an explanation for the relationship between selection, adaptation and retention dynamics and the creation of variety. The research is supported by analysis of empirical data pertaining to the procurement of engineering assets in a large asset intensive organisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, cities have shown increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change, and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning, human needs are supplied while natural resources are used in the most effective and sustainable manner and ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, this chapter briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, it presents a conceptual framework for a new methodology for developing sustainable urban ecosystems through ecological planning approach.