175 resultados para Diffractive optics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose/aim Myopia incidence is increasing around the world. Myopisation is considered to be caused by a variety of factors. One consideration is whether higher-order aberrations (HOA) influence myopisation. More knowledge of optics in anisometropic eyes might give further insight into the development of refractive error. Materials and methods To analyse the possible influence of HOA on refractive error development, we compared HOA between anisometropes and isometropes. We analysed HOA up to the 4th order for both eyes of 20 anisometropes (mean age: 43 ± 17 years) and 20 isometropes (mean age: 33 ±17 years). HOA were measured with the Shack-Hartman i.Profiler (Carl Zeiss, Germany) and were recalculated for a 4 mm pupil. Mean spherical equivalent (MSE) was based on the subjective refraction. Anisometropia was defined as ≥1D interocular difference in MSE. The mean absolute differences between right and left eyes in spherical equivalent were 0.28 ± 0.21 D in the isometropic group and 2.81 ± 2.04 D in the anisometropic group. Interocular differences in HOA were compared with the interocular difference in MSE using correlations. Results For isometropes oblique trefoil, vertical coma, horizontal coma and spherical aberration showed significant correlations between the two eyes. In anisometropes all analysed higher-order aberrations correlated significantly between the two eyes except oblique secondary astigmatism and secondary astigmatism. When analysing anisometropes and isometropes separately, no significant correlations were found between interocular differences of higher-order aberrations and MSE. For isometropes and anisometropes combined, tetrafoil correlated significantly with MSE in left eyes. Conclusions The present study could not show that interocular differences of higher-order aberrations increase with increasing interocular difference in MSE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose The eye rotation approach for measuring peripheral eye length leads to concern about whether the rotation influences results, such as through pressure exerted by eyelids or extra-ocular muscles. This study investigated whether this approach is valid. Methods Peripheral eye lengths were measured with a Lenstar LS 900 biometer for eye rotation and no-eye rotation conditions (head rotation for horizontal meridian and instrument rotation for vertical meridian). Measurements were made for 23 healthy young adults along the horizontal visual field (±30°) and, for a subset of eight participants along the vertical visual field (±25°). To investigate the influence of the duration of eye rotation, for six participants measurements were made at 0, 60, 120, 180 and 210 s after eye rotation to ±30° along horizontal and vertical visual fields. Results Peripheral eye lengths were not significantly different for the conditions along the vertical meridian (F1,7 = 0.16, p = 0.71). The peripheral eye lengths for the conditions were significantly different along the horizontal meridian (F1,22 = 4.85, p = 0.04), although not at individual positions (p ≥ 0.10) and were not important. There were no apparent differences between the emmetropic and myopic groups. There was no significant change in eye length at any position after maintaining position for 210 s. Conclusion Eye rotation and no-eye rotation conditions were similar for measuring peripheral eye lengths along horizontal and vertical visual field meridians at ±30° and ±25°, respectively. Either condition can be used to estimate retinal shape from peripheral eye lengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fiber Bragg grating (FBG) accelerometer using transverse forces is more sensitive than one using axial forces with the same mass of the inertial object, because a barely stretched FBG fixed at its two ends is much more sensitive to transverse forces than axial ones. The spring-mass theory, with the assumption that the axial force changes little during the vibration, cannot accurately predict its sensitivity and resonant frequency in the gravitational direction because the assumption does not hold due to the fact that the FBG is barely prestretched. It was modified but still required experimental verification due to the limitations in the original experiments, such as the (1) friction between the inertial object and shell; (2) errors involved in estimating the time-domain records; (3) limited data; and (4) large interval ∼5 Hz between the tested frequencies in the frequency-response experiments. The experiments presented here have verified the modified theory by overcoming those limitations. On the frequency responses, it is observed that the optimal condition for simultaneously achieving high sensitivity and resonant frequency is at the infinitesimal prestretch. On the sensitivity at the same frequency, the experimental sensitivities of the FBG accelerometer with a 5.71 gram inertial object at 6 Hz (1.29, 1.19, 0.88, 0.64, and 0.31 nm/g at the 0.03, 0.69, 1.41, 1.93, and 3.16 nm prestretches, respectively) agree with the static sensitivities predicted (1.25, 1.14, 0.83, 0.61, and 0.29 nm/g, correspondingly). On the resonant frequency, (1) its assumption that the resonant frequencies in the forced and free vibrations are similar is experimentally verified; (2) its dependence on the distance between the FBG’s fixed ends is examined, showing it to be independent; (3) the predictions of the spring-mass theory and modified theory are compared with the experimental results, showing that the modified theory predicts more accurately. The modified theory can be used more confidently in guiding its design by predicting its static sensitivity and resonant frequency, and may have applications in other fields for the scenario where the spring-mass theory fails.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parsons' Diseases of the Eye, first published in 1907, is one of the foundation texts of modern ophthalmology. It has seen a new edition at approximately 5-year intervals throughout the century. This latest edition incorporates developments that have taken place within the specialty since the 1984 impression, but remains in a virtually unchanged format...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To investigate the differences between and variations across time in corneal topography and ocular wavefront aberrations in young Singaporean myopes and emmetropes. Methods We used a videokeratoscope and wavefront sensor to measure the ocular surface topography and wavefront aberrations of the total eye optics in the morning, mid-day and late afternoon on two separate days. Topography data were used to derive the corneal surface wavefront aberrations. Both the corneal and total wavefronts were analysed up to the 4th radial order of the Zernike polynomial expansion, and were centred on the entrance pupil (5 mm). The participants included 12 young progressing myopes, 13 young stable myopes and 15 young age-matched emmetropes. Results For all subjects considered together there were significant changes in some of the aberrations terms across the day, such as spherical aberration ( ) and vertical coma ( ) (repeated measures ANOVA, p<0.05). The magnitude of positive spherical aberration ( ) was significantly lower in the progressing myope group than that of the stable myopes (p=0.04) and emmetrope group (p=0.02). There were also significant interactions between refractive group and time of day for with/against-the-rule astigmatism ( ). Significantly lower 4th order RMS of ocular wavefront aberrations were found in the progressing myope group compared with the stable myopes and emmetropes (p<0.01). Conclusions These differences and variations in the corneal and total aberrations may have significance for our understanding of refractive error development and for clinical applications requiring accurate wavefront measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In presented method combination of Fourier and Time domain detection enables to broaden the effective bandwidth for time dependent Doppler Signal that allows for using higher-order Bessel functions to calculate unambiguously the vibration amplitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from materials characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures, comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures but little attention has been given to the effect on the light scattering properties in relation to DLS. In this work, small (core size < 5 nm) core-shell nanoparticles were used as a case study to measure the capping thickness of a layer of dodecanethiol (DDT) on Au and ZnO nanoparticles by DLS. We find that the DDT shell has very little effect on the scattering properties of the inorganic core and hence can be ignored to a first approximation. However, this results in conventional DLS analysis overestimating the hydrodynamic size in the volume and number weighted distributions. By introducing a simple correction formula that more accurately yields hydrodynamic size distributions a more precise determination of the molecular shell thickness is obtained. With this correction, the measured thickness of the DDT shell was found to be 7.3 ± 0.3 Å, much less than the extended chain length of 16 Å. This organic layer thickness suggests that on small nanoparticles, the DDT monolayer adopts a compact disordered structure rather than an open ordered structure on both ZnO and Au nanoparticle surfaces. These observations are in agreement with published molecular dynamics results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a new approach that uses the single beam Z-scan technique, to discriminate between excited state absorption (ESA) and two and three photon nonlinear absorption. By measuring the apparent delay or advance of the pulse in reaching the detector, the nonlinear absorption can be unambiguously identified as either instantaneous or transient. The simple method does not require a large range of input fluences or sophisticated pulse-probe experimental apparatus. The technique is easily extended to any absorption process dependent on pulse width and to nonlinear refraction measurements. We demonstrate in particular, that the large nonlinear absorption in ZnO nanocones when exposed to nanosecond 532 nm pulses, is due mostly to ESA, not pure two-photon absorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gold particle interaction with few-layer graphenes is of interest for the development of numerous optical nanodevices. The results of numerical studies of the coupling of gold nanoparticles with few-layer vertical graphene sheets are presented. The field strengths are computed and the optimum nanoparticle configurations for the formation of SERS hotpots are obtained. The nanoparticles are modeled as 8 nm diameter spheres atop 1.5 nm (5 layers) graphene sheet. The vertical orientation is of particular interest as it is possible to use both sides of the graphene structure and potentially double the number of particles in the system. Our results show that with the addition of an opposing particle a much stronger signal can be obtained as well as the particle separation can be controlled by the number of atomic carbon layers. These results provide further insights and contribute to the development of next-generation plasmonic devices based on nanostructures with hybrid dimensionality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pitfall is an unapparent source of trouble or danger; a hidden hazard: Today we all face, or will soon be facing ecological pitfalls of many kinds. ‘Pitfall’ is a continually-evolving artwork built from multiple screens, a tabletop landscape mapped with projections, fibre optics, 3D spatial sound and infrared night imagery. It builds upon ideas, recordings and cross-disciplinary processes developed during my 2012-13 ANAT Synapse Art-Science residency, with the Australian Wildlife Conservancy (AWC), Australia’s largest private-sector conservation organisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Re-introduction Project began with an art-science research residency in 2012, funded through the Australian 'Synapse' art-science residency program. It was developed in partnership with the Australian Wildlife Conservancy, Australia's largest private conservation agency and their South-East regional scientist Matt Hayward and conducted through a series of seven high intensity field-trips to AWC’s remote properties in VIC, NSW and SA. These trips coincided with key times at which the AWC’s mobile scientific teams were undertaking intensive scientific activities. The program coincided with specific events that senior scientist collaborator Dr Matt Hayward led in 2012 at Mallee Regions (Yookamurra, Scotia and Buckaringa), Lake Eyre Basin (Kalamurina) and Sydney (North Head). The initial outcome of the project was the work Pitfall (An Opportunistic Survey) - a new media installation created in light, media, object, text and sound presented near the AWC headquarters at Mildura in far NW Victoria. Pitfall built upon ideas and cross disciplinary processes developed during this residency/collaboration with Australian Wildlife Conservancy inspired by working with their ecological scientists during pitfall-trap survey events used to survey small mammals and invertebrates. ‘Pitfall’ was designed in response to a playful survey that I asked the AWC scientists to engage with around ideas of avoiding ecological pitfalls into the future. This continually-evolving artwork was built from multiple screens, a tabletop landscape mapped with projections, fibre optics, 3D spatial sound and infrared night imagery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To investigate changes in the characteristics of the corneal optics, total optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 min. METHODS Ten emmetropes (mean - 0.14 ± 0.24 DS) and 10 myopes (mean - 2.26 ± 1.42 DS) aged from 18 to 30 years were recruited. To measure ocular biometrics and corneal topography in downward gaze, an optical biometer (Lenstar LS900) and a rotating Scheimpflug camera (Pentacam HR) were inclined on a custom built, height and tilt adjustable table. The total optics of the eye were measured in downward gaze with binocular fixation using a modified Shack-Hartmann wavefront sensor. Initially, subjects performed a distance viewing task at primary gaze for 10 min to provide a "wash-out" period for prior visual tasks. A distance task (watching video at 6 m) in downward gaze (25°) and a near task (watching video on a portable LCD screen with 2.5 D accommodation demand) in primary gaze and 25°downward gaze were then carried out, each for 10 min in a randomized order. During measurements, in dichoptic view, a Maltese cross was fixated with the right (untested) eye and the instrument’s fixation target was fixated with the subject’s tested left eye. Immediately after (0 min), 5 and 10 min from the commencement of each trial, measurements of ocular parameters were acquired in downward gaze. RESULTS Axial length exhibited a significant increase with downward gaze and accommodation over time (p<0.05). The greatest axial elongation was observed in downward gaze with 2.5 D accommodation after 10 min (mean change from baseline 23±3 µm). Downward gaze also caused greater changes in anterior chamber depth (ACD) and lens thickness (LT) with accommodation (ACD mean change -163±12µm at 10 min; LT mean change 173±17 µm at 10 min) compared to primary gaze with accommodation (ACD mean change -138±12µm at 10 min; LT mean change 131±15 µm at 10 min). Both corneal power and total ocular power changed by a small but significant amount with downward gaze (p<0.05), resulting in a myopic shift (~0.10 D) in the spherical power of the eye compared with primary gaze. CONCLUSION The axial length, anterior biometrics and ocular refraction change significantly with accommodation in downward gaze as a function of time. These findings provide new insights into the optical and bio-mechanical changes of the eye during typical near tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effects of handling and fixation processes on the two-photon fluorescence spectroscopy of endogenous fluorophors in mouse skeletal muscle. The skeletal muscle was handled in one of two ways: either sectioned without storage or sectioned following storage in a freezer. The two-photon fluorescence spectra measured for different storage or fixation periods show a differential among those samples that were stored in water or were fixed either in formalin or methanol. The spectroscopic results indicate that formalin was the least disruptive fixative, having only a weak effect on the two-photon fluorescence spectroscopy of muscle tissue, whereas methanol had a significant influence on one of the autofluorescence peaks. The two handling processes yielded similar spectral information, indicating no different effects between them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dependence of second harmonic generation (SHG) from hyperplastic parenchyma and stroma in maligant human prostate tissue on excitation wavelengths was measured. A femtosecond pulsed laser, a scanning microscope and a spectrograph were used to perform the measurements. The spectra were measured under excitation power of 10 mW at excitation wavelengths of 730 nm, 750 nm, 800 nm, 850 nm and 890 nm. Analysis suggested that the SHG in prostate tissue is highly structured and wavelength dependent signifying its ability to be used as an indicator for recognizing tissue components, ultrastructures, micro-environments and diseases.