373 resultados para Different sizes
Resumo:
The purpose of this thesis is to examine the influence of ethnic cultural values on the relationship of role demands and the work-family balance (WFB) experience. Past studies have found that the demands from work and family roles have a different impact on the work-family experience in people of different ethnicity. Researchers attribute these results to the cultural differences across the groups. However, there has been no empirical support for these assumptions because most past studies did not explicitly measure the cultural dimension in their design. Therefore, although studies have found ethnic differences in work-family experience, as cultural variables were not measured, it cannot be determined whether these differences were due to the differing ethnic groups’ cultural styles. The present thesis is set up to address this limitation in the literature, employing the Malay and Chinese ethnic groups in Malaysia as the study samples. The investigation consisted of pilot interviews and two survey studies. The interviews were carried out to establish the perception of WFB by target participants of a non-western nation. The first survey served to identify whether the Malay and Chinese ethnic groups residing under the same economic and social systems vary in their perceptions of work and family roles. The second survey tests the research model empirically, that is, whether cultural values moderate the relationship between role demands and WFB and if these moderation effects vary across ethnic groups. From the interviews, the results indicated that work-family experience is not a universal experience, but is partly culture-specific. Specifically, in the case of Malaysia, WFB is very much observed from the role obligation perspective. In particular, balance is perceived when work duties and household affairs are both adequately fulfilled. On the other hand, the conceptualisation of WFB in terms of role satisfaction and role interference also emerged in the interviews, suggesting the universality of these constructs across cultures. The findings from Survey One indicated that participants of different ethnicities in this study do not differ greatly in their perceptions regarding their participation in work and family roles. Generally, these participants revealed the less traditional attitudes towards women’s participation in work and family roles. However, variations were observed between the two groups in terms of reasons for working, spouses’ preferences towards their employment, and the extent to which their work role is perceived to impede their normative role performance in the household. Despite these differences, the Malay and Chinese ethnic groups showed more similarities than differences in their perceptions of work and family. The findings from Survey Two, which tested the research model, produced mixed results. On the whole, the results showed that the cultural dimensions examined in this study (i.e. collectivism, work identity and family identity) did influence the relationship between role demands and WFB experience, thus providing empirical evidence for the assumption in the literature that the relationship between role demand and work-family experience is moderated by cultural values. Most importantly, support was found for the proposition that these moderation effects vary between the Malay and Chinese ethnic groups. Moreover, this study also found evidence that Malays and Chinese differ significantly on collectivism and work identity cultural dimensions where Malays are found to be more collectivist than the Chinese, while work identity is stronger in the Chinese than in the Malays. There is no difference in the levels of family identity between the two groups. Of all the three moderators, work identity was deemed the most important because many of the supported hypotheses pertained to the work identity moderating effects. In contrast, family identity does not seem to have much moderating influence on role demand-WFB relationships, while the results for the collectivism moderator are mixed. As such, although not conclusive, it can be deduced that variations in the effects of role demand on work-family experience across ethnicity are a result of the groups’ cultural differences, thereby supporting the assumption in the literature.
Resumo:
A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.
Resumo:
A new immobilized flat plate photocatalytic reactor for wastewater treatment has been proposed in this study to avoid subsequent catalyst removal from the treated water. The reactor consists of an inlet, reactive section where catalyst is coated and an outlet parts. In order to optimize the fluid mixing and reactor design, this study aims to investigate the influence of baffles and its arrangement on the flat plate reactor hydrodynamics using computational fluid dynamics (CFD) simulation. For simulation, an array of baffles acting as turbulence promoters is inserted in the reactive zone of the reactor. In this regard, results obtained from the simulation of a baffled- flat plate photoreactor hydrodynamics for different baffle positions, heights and intervals are presented utilizing RNG k-ε turbulence model. Under the conditions simulated, the qualitative flow features, such as the development and separation of boundary layers, vortex formation, the presence of high shear regions and recirculation zones, and the underlying mechanism are examined. The influence of various baffle sizes on the distribution of pollutant concentration is also highlighted. The results presented here indicate that the spanning of recirculation increases the degree of interfacial distortion with a larger interfacial area between fluids which results in substantial enhancement in fluid mixing. The simulation results suggest that the qualitative and quantitative properties of fluid dynamics in a baffled reactor can be obtained which provides valuable insight to fully understand the effect of baffles and its arrangements on the flow pattern, behaviour, and feature.
Resumo:
Experiments were undertaken to study effect of initial conditions on the expansion ratio of two grains in a laboratory scale, single speed, single screw extruder at Naresuan University, Thailand. Jasmine rice and Mung bean were used as the material. Three different initial moisture contents were adjusted for the grains and classified them into three groups according to particle sizes. Mesh sizes used are 12 and 14. Expansion ratio was measured at a constant barrel temperature of 190oC. Response surface methodology was used to obtain optimum conditions between moisture content and particle size of the materials concerned.
Resumo:
Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of copper nanowire with different crystallographic orientations, under tensile deformation. Three different crystallographic orientations have been considered. The deformation mechanism has been carefully discussed. It is found that the Young’s modulus is insensitive to the defect, even when the nanowire’s crystallographic orientation is different. However, due to the defect’s effect, the yield strength and yield strain appear a large decrease. The defects have played a role of dislocation sources, the slips or stacking faults are first generated around the locations of the defects. The necking locations have also been affected by different defects. Due to the surface defect, the plastic deformation has received a large influence for the <001>/{110} and <110> orientated nanowires, and a relative small influence is seen for the <111> nanowire.
Resumo:
Young children shift meanings across multiple modes long before they have mastered formal writing skills. In a digital age, children are socialised into a wide range of new digital media conventions in the home, at school, and in community-based settings. This article draws on longitudinal classroom research with a culturally diverse cohort of eight-year old children, to advance new understandings about children’s engagement in transmediation in the context of digital media creation. The author illuminates three key principles of transmediation using multimodal snapshots of storyboard images, digital movie frames, and online comics. Insights about transmediation are developed through dialogue with the children about their thought processes and intentions for their multimedia creations.
Resumo:
In this paper, a comprehensive planning methodology is proposed that can minimize the line loss, maximize the reliability and improve the voltage profile in a distribution network. The injected active and reactive power of Distributed Generators (DG) and the installed capacitor sizes at different buses and for different load levels are optimally controlled. The tap setting of HV/MV transformer along with the line and transformer upgrading is also included in the objective function. A hybrid optimization method, called Hybrid Discrete Particle Swarm Optimization (HDPSO), is introduced to solve this nonlinear and discrete optimization problem. The proposed HDPSO approach is a developed version of DPSO in which the diversity of the optimizing variables is increased using the genetic algorithm operators to avoid trapping in local minima. The objective function is composed of the investment cost of DGs, capacitors, distribution lines and HV/MV transformer, the line loss, and the reliability. All of these elements are converted into genuine dollars. Given this, a single-objective optimization method is sufficient. The bus voltage and the line current as constraints are satisfied during the optimization procedure. The IEEE 18-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate the unavoidable need for optimal control on the DG active and reactive power and capacitors in distribution networks.
Resumo:
Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ.
Resumo:
The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol.2, 117–E (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ- DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.
Resumo:
We analyze the puzzling behavior of the volatility of individual stock returns over the past few decades. The literature has provided many different explanations to the trend in volatility and this paper tests the viability of the different explanations. Virtually all current theoretical arguments that are provided for the trend in the average level of volatility over time lend themselves to explanations about the difference in volatility levels between firms in the cross-section. We therefore focus separately on the cross-sectional and time-series explanatory power of the different proxies. We fail to find a proxy that is able to explain both dimensions well. In particular, we find that Cao et al. [Cao, C., Simin, T.T., Zhao, J., 2008. Can growth options explain the trend in idiosyncratic risk? Review of Financial Studies 21, 2599–2633] market-to-book ratio tracks average volatility levels well, but has no cross-sectional explanatory power. On the other hand, the low-price proxy suggested by Brandt et al. [Brandt, M.W., Brav, A., Graham, J.R., Kumar, A., 2010. The idiosyncratic volatility puzzle: time trend or speculative episodes. Review of Financial Studies 23, 863–899] has much cross-sectional explanatory power, but has virtually no time-series explanatory power. We also find that the different proxies do not explain the trend in volatility in the period prior to 1995 (R-squared of virtually zero), but explain rather well the trend in volatility at the turn of the Millennium (1995–2005).