276 resultados para Design|Architecture
Resumo:
Without the virtually free services of nature like clean air and water, humans would not last long. Natural systems can be incorporated in existing urban structures or spaces to add public amenity, mitigate the heat island eff ect, reduce pollution, add oxygen, and ensure water, electricity and food security in urban areas. Th ere are many eco-solutions that could radically reduce resource consumption and pollution and even provide surplus ecosystem services in the built environment at little or no operational cost, if adequately supported by design. Th is is the second part of a two part paper that explains what eco-services are, then provides examples of how design can generate natural as well as social capital. Using examples of actual and notional solutions, both papers set out to challenge designers to ‘think again’, and invent ways of creating net positive environmental gains through built environment design.
Resumo:
Accessible housing is a scarce yet much needed commodity in Australia. A national agreement between industry and advocacy groups to a voluntary approach, called the Livable Design program, aims to provide access features in all new housing by 2020. Through a range of awareness raising initiatives, the program is anticipating increased supply by builders and increased demand by home-buyers. However the people who need accessible housing are the least likely and least able to buy it at the point of new sale and average homebuyers do not consider access features as a priority. This approach has not been successful overseas or in Australia in the past. Regulation with incentives supported by education and awareness has provided the best results, yet, regulation typically comes with controversy and resistance from the housing industry. A study is planned to identify how effective the Livable Design program is likely to be, what is likely to hinder it and why regulation is likely to be needed.
Resumo:
The ability to play freely in our cities is essential for sustainable wellbeing. When integrated successfully into our cities, Urban Play performs an important role; physically, socially and culturally contributing to the image of the city. While Urban Play is essential, it also finds itself in conflict with the city. Under modernist urban approaches play activities have become progressively segregated from the urban context through a tripartite of design, procurement and management practices. Despite these restrictions, emergent underground play forms overcome the isolation of play within urban space. One of these activities (parkour) is used as an evocative case study to reveal the hidden urban terrains of desire and fear as it re-interprets the fabric of the city, eliciting practice based discussions about procurement, design and management practice along its route.
Resumo:
Nightclubs are businesses. Their business is pleasure; however pleasure has its price. People have become increasingly concerned about the problems of violence in society but why do higher levels of violence occur in nightclubs despite the established patterns of behaviour that dictates how we socialise and act? In response, researchers have focused on identifying social and situational factors that may contribute to violence from a government perspective, focusing on a variety of specific issues ranging from financial standpoints with effective target marketing strategies to legal obligations of supplying alcohol and abiding regulatory conditions. There is little research into specific design properties that can determine design standards to ensure/improve the physical design of nightclub environments to reduce patron violence. To address this gap, this current article aims to understand how people experience and respond to the physical environment of nightclubs and how these spaces influence their behaviour. The first section of this paper examines the background on nightclubs and theories concerning the influence of pleasure. The second section of this paper details the findings of existing studies that have examined the nightlife context and the various factors that influence patron violence. The main finding of this paper is that although alcohol likely plays a contributing role in aggressive patron behaviour, there is evidence that the relationship is moderated by a number of significant factors relating to the characteristics of the drinking environment such as: physical comfort; the degree of overall 'permissiveness‘ in the establishment; crowding; and physical environmental elements most influenced by day to-day management practices such as lighting, ventilation, cleanliness and seating arrangements. The findings from this paper have been used to develop a framework to guide exploratory research on how specific elements of the physical environment of nightclubs have an impact on elevated patron aggression and assault (Koleczko & Garcia Hansen, 2011).
Resumo:
Violence in nightclubs is a serious problem that has the Australian government launching multimillion dollar drinking campaigns. Research on nightclub violence has focused on identifying contributing social and environmental factors, with many concentrating on a variety of specific issues ranging from financial standpoints with effective target marketing strategies to legal obligations of supplying alcohol and abiding regulatory conditions. Moreover, existing research suggests that there is no single factor that directly affects the rate violence in licensed venues. As detailed in the review paper of Koleczko and Garcia Hansen (2011), there is little research about the physical environment of nightclubs and which specific design properties can be used to determine design standards to ensure/improve the physical design of nightclub environments to reduce patron violence. This current study seeks to address this omission by reporting on a series of interviews with participants from management and design domains. Featured case studies are both located in Fortitude Valley, a Mecca for party-goers and the busiest nightclub district in Queensland. The results and analysis support the conclusions that a number of elements of the physical environment influence elevated patron aggression and assault.
Resumo:
There are many applications in aeronautics where there exist strong couplings between disciplines. One practical example is within the context of Unmanned Aerial Vehicle(UAV) automation where there exists strong coupling between operation constraints, aerodynamics, vehicle dynamics, mission and path planning. UAV path planning can be done either online or offline. The current state of path planning optimisation online UAVs with high performance computation is not at the same level as its ground-based offline optimizer's counterpart, this is mainly due to the volume, power and weight limitations on the UAV; some small UAVs do not have the computational power needed for some optimisation and path planning task. In this paper, we describe an optimisation method which can be applied to Multi-disciplinary Design Optimisation problems and UAV path planning problems. Hardware-based design optimisation techniques are used. The power and physical limitations of UAV, which may not be a problem in PC-based solutions, can be approached by utilizing a Field Programmable Gate Array (FPGA) as an algorithm accelerator. The inevitable latency produced by the iterative process of an Evolutionary Algorithm (EA) is concealed by exploiting the parallelism component within the dataflow paradigm of the EA on an FPGA architecture. Results compare software PC-based solutions and the hardware-based solutions for benchmark mathematical problems as well as a simple real world engineering problem. Results also indicate the practicality of the method which can be used for more complex single and multi objective coupled problems in aeronautical applications.
Resumo:
In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.
Resumo:
After state-wide flooding and a category-5 tropical cyclone, three-quarters of the state of Queensland was declared a disaster zone in early 2011. This deluge of adversity had a significant impact on university students, a few weeks prior to the start of the academic semester. The purpose of this paper is to examine the role that design plays in facilitating students to understand and respond to, adversity. The participants of this study were second and fourth year architectural design students at a large Australian University, in Queensland. As a part of their core architectural design studies, students were required to provide architectural responses to the recent catastrophic events in Queensland. Qualitative data was obtained through student surveys, work design work submitted by students and a survey of guests who attending an exhibition of the student work. The results of this research showed that the students produced more than just the required set of architectural drawings, process journals and models, but also recognition of the important role that the affective dimension of the flooding event and the design process played in helping them to both understand and respond to, adversity. They held the ‘real world’ experience and practical aspect of the assessment in higher regard than their typical focus on aesthetics and the making of iconic design. Perhaps most importantly, the students recognised that this process allowed them to have a voice, and a means to respond to adversity through the powerful language of design.
Resumo:
"Bouncing Back: Resilient Design for Brisbane" was an opportunity for QUT students to communicate their inspiring design responses to adversity, to the larger Brisbane community. The exhibition demonstrates new and innovative ways of thinking about our cities, and how they are built to be resilient and to suit extreme environmental conditions. The challenge for architecture students is to address the state of architecture as a reflection of today's world and to consider how design fits into the 21st century. Students have explored notions of 'Urban Resilience' from multiple perspectives, including emergency design while facing flooding, flood proof housing and urban designs.
Resumo:
In a study aimed at better understanding how staff and students adapt to new blended studio learning environments (BSLE’s), a group of 165 second year architecture students at a large school of architecture in Australia were separated into two different design studio learning environments. 70% of students were allocated to a traditional studio design learning environment (TSLE) and 30% to a new, high technology embedded, prototype digital learning laboratory. The digital learning laboratory was purpose designed for the case-study users, adapted Student-Centred Active Learning Environment for Undergraduate Programs (SCALE-UP) principles, and built as part of a larger university research project. The architecture students attended the same lectures, followed the same studio curriculum and completed the same pieces of assessment; the only major differences were the teaching staff and physical environment within which the studios were conducted. At the end of the semester, the staff and students were asked to complete a questionnaire about their experiences and preferences within the two respective learning environments. Following this, participants were invited to participate in focus groups, where a synergistic approach was effected. Using a dual method qualitative approach, the questionnaire and survey data were coded and extrapolated using both thematic analysis and grounded theory methodology. The results from these two different approaches were compared, contrasted and finally merged, to reveal six distinct emerging themes, which were instrumental in offering resistance or influencing adaptation to, the new BLSE. This paper reports on the study, discusses the major contributors to negative resistance and proposes points for consideration, when transitioning from a TSLE to a BLSE.
Resumo:
Notwithstanding the obvious potential advantages of information and communications technology (ICT) in the enhanced provision of healthcare services, there are some concerns associated with integration of and access to electronic health records. A security violation in health records, such as an unauthorised disclosure or unauthorised alteration of an individual's health information, can significantly undermine both healthcare providers' and consumers' confidence and trust in e-health systems. A crisis in confidence in any national level e-health system could seriously degrade the realisation of the system's potential benefits. In response to the privacy and security requirements for the protection of health information, this research project investigated national and international e-health development activities to identify the necessary requirements for the creation of a trusted health information system architecture consistent with legislative and regulatory requirements and relevant health informatics standards. The research examined the appropriateness and sustainability of the current approaches for the protection of health information. It then proposed an architecture to facilitate the viable and sustainable enforcement of privacy and security in health information systems under the project title "Open and Trusted Health Information Systems (OTHIS)". OTHIS addresses necessary security controls to protect sensitive health information when such data is at rest, during processing and in transit with three separate and achievable security function-based concepts and modules: a) Health Informatics Application Security (HIAS); b) Health Informatics Access Control (HIAC); and c) Health Informatics Network Security (HINS). The outcome of this research is a roadmap for a viable and sustainable architecture for providing robust protection and security of health information including elucidations of three achievable security control subsystem requirements within the proposed architecture. The successful completion of two proof-of-concept prototypes demonstrated the comprehensibility, feasibility and practicality of the HIAC and HIAS models for the development and assessment of trusted health systems. Meanwhile, the OTHIS architecture has provided guidance for technical and security design appropriate to the development and implementation of trusted health information systems whilst simultaneously offering guidance for ongoing research projects. The socio-economic implications of this research can be summarised in the fact that this research embraces the need for low cost security strategies against economic realities by using open-source technologies for overall test implementation. This allows the proposed architecture to be publicly accessible, providing a platform for interoperability to meet real-world application security demands. On the whole, the OTHIS architecture sets a high level of security standard for the establishment and maintenance of both current and future health information systems. This thereby increases healthcare providers‘ and consumers‘ trust in the adoption of electronic health records to realise the associated benefits.
Resumo:
There is a need for decision support tools that integrate energy simulation into early design in the context of Australian practice. Despite the proliferation of simulation programs in the last decade, there are no ready-to-use applications that cater specifically for the Australian climate and regulations. Furthermore, the majority of existing tools focus on achieving interaction with the design domain through model-based interoperability, and largely overlook the issue of process integration. This paper proposes an energy-oriented design environment that both accommodates the Australian context and provides interactive and iterative information exchanges that facilitate feedback between domains. It then presents the structure for DEEPA, an openly customisable system that couples parametric modelling and energy simulation software as a means of developing a decision support tool to allow designers to rapidly and flexibly assess the performance of early design alternatives. Finally, it discusses the benefits of developing a dynamic and concurrent performance evaluation process that parallels the characteristics and relationships of the design process.
Resumo:
There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.
Resumo:
Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design. As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation. A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly. This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.
Resumo:
In John Frazer's seminal book An Evolutionary Architecture (1995), from which this essay is extracted, a fundamental approach is established for have natural systems can unfold mechanisms for negotiating the complex design space inherent in architectural systems. In this essay, which forms a critical part of the book, Frazer draws both correlations and distinctions from natural processes as emulated in design processes and form as active manifestations within natural systems. Form is seen as an evolving agent generated via the rules of descriptive genetic coding, functioning as a part of a metabolic environment. Frazer's process-model establishes the realm in which computation must manoeuvre to produce a valid solution space, including the operations of self-organisation, complexity and emergent behaviour. Addressing design as an authored practice, he extends the transference of 'creativity' from the explicit impression into form, to the investment of though, organisation and strategy in the computational processes which produce form. Frazer's text concentrates astutely on the practising of the evolutionary paradigm, the output of which postulates an architecture born of the relationships to dynamic environmental and socio-economic contexts, and realised through morphogenetic materialisation.