137 resultados para Complementary computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed computation and storage have been widely used for processing of big data sets. For many big data problems, with the size of data growing rapidly, the distribution of computing tasks and related data can affect the performance of the computing system greatly. In this paper, a distributed computing framework is presented for high performance computing of All-to-All Comparison Problems. A data distribution strategy is embedded in the framework for reduced storage space and balanced computing load. Experiments are conducted to demonstrate the effectiveness of the developed approach. They have shown that about 88% of the ideal performance capacity have be achieved in multiple machines through using the approach presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The successful establishment and growth of mixed-species forest plantations requires that complementary or facilitatory species be identified. This can be difficult in many tropical areas because the growth characteristics of endemic species are often unknown, particularly when grown at potentially higher densities in plantations than in natural forests. Here, we investigate whether wood density is a useful and readily accessible trait for choosing complementary species for mixed species plantations. Wood density represents the carbon investment per unit volume of stem with a trade-off generally found between fast (low wood density) and slow (high wood density) growing species. To do this, we use data collected from 18 highly diverse mixed species plantations (4–23 mostly native species) aged from 6 to 11 years at the time of data collection located on Leyte Island, Philippines. We found significant negative correlations between wood densities and the height of the most abundant species, as well as with measures of overall stand growth and tree diameter size distribution. Not only do species with denser woods have slower growth rates, but also mixed-species plantations with higher average wood density and higher stem density were also less productive, at least in these young plantations. Similarly, stands with a high diversity in wood densities were less productive. There is growing interest in making greater use of native multi-species mixtures in smallholder and community planting programs in the tropics, and our results show databases of wood density values may help improve their design. In the early development stages of plantations, canopy closure and rapid height growth are usually key silvicultural targets, and wood density values can predict the rapid height development of species. If plantations are being grown for the livelihood of small landholders then the best target is to choose some species with different wood densities. This allows an early harvest of low-wood density species for early income, and will also reduce competition for slower growing trees with higher wood densities for later income generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses transaction cost theory to study cloud computing adoption. A model is developed and tested with data from an Australian survey. According to the results, perceived vendor opportunism and perceived legislative uncertainty around cloud computing were significantly associated with perceived cloud computing security risk. There was also a significant negative relationship between perceived cloud computing security risk and the intention to adopt cloud services. This study also reports on adoption rates of cloud computing in terms of applications, as well as the types of services used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased focus on energy cost savings and carbon footprint reduction efforts improved the visibility of building energy simulation, which became a mandatory requirement of several building rating systems. Despite developments in building energy simulation algorithms and user interfaces, there are some major challenges associated with building energy simulation; an important one is the computational demands and processing time. In this paper, we analyze the opportunities and challenges associated with this topic while executing a set of 275 parametric energy models simultaneously in EnergyPlus using a High Performance Computing (HPC) cluster. Successful parallel computing implementation of building energy simulations will not only improve the time necessary to get the results and enable scenario development for different design considerations, but also might enable Dynamic-Building Information Modeling (BIM) integration and near real-time decision-making. This paper concludes with the discussions on future directions and opportunities associated with building energy modeling simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological systems are typically complex and adaptive, involving large numbers of entities, or organisms, and many-layered interactions between these. System behaviour evolves over time, and typically benefits from previous experience by retaining memory of previous events. Given the dynamic nature of these phenomena, it is non-trivial to provide a comprehensive description of complex adaptive systems and, in particular, to define the importance and contribution of low-level unsupervised interactions to the overall evolution process. In this chapter, the authors focus on the application of the agent-based paradigm in the context of the immune response to HIV. Explicit implementation of lymph nodes and the associated lymph network, including lymphatic chain structure, is a key objective, and requires parallelisation of the model. Steps taken towards an optimal communication strategy are detailed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Recent advances in Immunology highlighted the importance of local properties on the overall progression of HIV infection. In particular, the gastrointestinal tract is seen as a key area during early infection, and the massive cell depletion associated with it may influence subsequent disease progression. This motivated the development of a large-scale agent-based model. Results Lymph nodes are explicitly implemented, and considerations on parallel computing permit large simulations and the inclusion of local features. The results obtained show that GI tract inclusion in the model leads to an accelerated disease progression, during both the early stages and the long-term evolution, compared to a theoretical, uniform model. Conclusions These results confirm the potential of treatment policies currently under investigation, which focus on this region. They also highlight the potential of this modelling framework, incorporating both agent-based and network-based components, in the context of complex systems where scaling-up alone does not result in models providing additional insights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomedical systems involve a large number of entities and intricate interactions between these. Their direct analysis is, therefore, difficult, and it is often necessary to rely on computational models. These models require significant resources and parallel computing solutions. These approaches are particularly suited, given parallel aspects in the nature of biomedical systems. Model hybridisation also permits the integration and simultaneous study of multiple aspects and scales of these systems, thus providing an efficient platform for multidisciplinary research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several algorithms and techniques widely used in Computer Science have been adapted from, or inspired by, known biological phenomena. This is a consequence of the multidisciplinary background of most early computer scientists. The field has now matured, and permits development of tools and collaborative frameworks which play a vital role in advancing current biomedical research. In this paper, we briefly present examples of the former, and elaborate upon two of the latter, applied to immunological modelling and as a new paradigm in gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main challenges in data analytics is that discovering structures and patterns in complex datasets is a computer-intensive task. Recent advances in high-performance computing provide part of the solution. Multicore systems are now more affordable and more accessible. In this paper, we investigate how this can be used to develop more advanced methods for data analytics. We focus on two specific areas: model-driven analysis and data mining using optimisation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As computational models in fields such as medicine and engineering get more refined, resource requirements are increased. In a first instance, these needs have been satisfied using parallel computing and HPC clusters. However, such systems are often costly and lack flexibility. HPC users are therefore tempted to move to elastic HPC using cloud services. One difficulty in making this transition is that HPC and cloud systems are different, and performance may vary. The purpose of this study is to evaluate cloud services as a means to minimise both cost and computation time for large-scale simulations, and to identify which system properties have the most significant impact on performance. Our simulation results show that, while the performance of Virtual CPU (VCPU) is satisfactory, network throughput may lead to difficulties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research field of urban computing – defined as “the integration of computing, sensing, and actuation technologies into everyday urban settings and lifestyles” – considers the design and use of ubiquitous computing technology in public and shared urban environments. Its impact on cities, buildings, and spaces evokes innumerable kinds of change. Embedded into our everyday lived environments, urban computing technologies have the potential to alter the meaning of physical space, and affect the activities performed in those spaces. This paper starts a multi-themed discussion of various aspects that make up the, at times, messy and certainly transdisciplinary field of urban computing and urban informatics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud computing has significantly impacted a broad range of industries, but these technologies and services have been absorbed throughout the marketplace unevenly. Some industries have moved aggressively towards cloud computing, while others have moved much more slowly. For the most part, the energy sector has approached cloud computing in a measured and cautious way, with progress often in the form of private cloud solutions rather than public ones, or hybridized information technology systems that combine cloud and existing non-cloud architectures. By moving towards cloud computing in a very slow and tentative way, however, the energy industry may prevent itself from reaping the full benefit that a more complete migration to the public cloud has brought about in several other industries. This short communication is accordingly intended to offer a high-level overview of cloud computing, and to put forward the argument that the energy sector should make a more complete migration to the public cloud in order to unlock the major system-wide efficiencies that cloud computing can provide. Also, assets within the energy sector should be designed with as much modularity and flexibility as possible so that they are not locked out of cloud-friendly options in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.