296 resultados para Collective subject discourse
Resumo:
There has been an abundance of education reform recommendations for teaching and teacher education as a result of national and international reviews. A major criticism in education is the lack of connection between theory and practice (or praxis), that is, how the learning at university informs practical applications for teaching in the classroom. This paper presents the Teacher Education Done Differently (TEDD) project, funded by the Department of Education, Employment and Workplace Relations (DEEWR). It outlines how it has re-structured its offering of coursework in a Bachelor of Education (BEd) held at an Australian university campus to embrace praxis. Establishing partnerships was crucial to the development of this project. TEDD initially gathered a reference group of educators, which included university staff, school executives, and other key stakeholders, who formed an Advisory Group and Steering Committee. These groups formed a collective vision for TEDD and aimed to motivate others, foster team work, and create leadership roles that would benefit all stakeholders. The paper presents how university units changed to include a stronger praxis development for preservice teachers. Preservice teachers take their learning into schools within lead-up programs such as Ed Start for practicum I, III, and IV; Science in Schools, and Studies of Society and its Environment (SOSE). Findings showed that opportunities for undertaking additional real-world experiences were perceived to assist the preservice teachers’ praxis development. Additional school-based experiences as lead-up days for field experiences and as avenues for exploring the teaching of specific subject areas presented as an opportunity for enhancing education for all.
Resumo:
Many current HCI, social networking, ubiquitous computing, and context aware designs, in order for the design to function, have access to, or collect, significant personal information about the user. This raises concerns about privacy and security, in both the research community and main-stream media. From a practical perspective, in the social world, secrecy and security form an ongoing accomplishment rather than something that is set up and left alone. We explore how design can support privacy as practical action, and investigate the notion of collective information-practice of privacy and security concerns of participants of a mobile, social software for ride sharing. This paper contributes an understanding of HCI security and privacy tensions, discovered while “designing in use” using a Reflective, Agile, Iterative Design (RAID) method.
Resumo:
Mixed convection of a two-dimensional laminar incompressible flow along a horizontal flat plate with streamwise sinusoidal surface temperature has been numerically investigated for different values of Rayleigh number and Reynolds number for constant values of Prandtl number, amplitude and frequency of periodic temperature. The numerical scheme is based on the finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm. The fluid considered in this study is air. The results are obtained for the Rayleigh number and Reynolds number ranging from 102 to 104 and 1 to 100, respectively, with constant physical properties for the fluid medium considered. Velocity and temperature profiles, streamlines, isotherms, and average Nusselt numbers are presented to observe the effect of the investigating parameters on fluid flow and heat transfer characteristics. The present results show that the convective phenomena are greatly influenced by the variation of Rayleigh numbers and Reynolds number.
Resumo:
Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.
Resumo:
Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).
Resumo:
This paper examines discussions of Generation Y within higher education discourse, arguing the sector’s use of the term to describe students is misguided for three reasons. First, portraying students as belonging to Generation Y homogenises people undertaking higher education as young, middle-class and technologically literate. Second, speaking of Generation Y students allows constructivism to be reinvented as a ‘new’ learning and teaching philosophy. Third, the Generation Y university student has become a central figure in concerns about technology’s role in learning and teaching. While the notion of the ‘Generation Y student’ creates the illusion that higher education institutions understand their constituents, ultimately, it is of little value in explaining young adults’ educational experiences.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It has the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. Although the LSB sections are commonly used as flexural members, no research has been undertaken on the shear behaviour of LSBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs. In this research finite element models of LSBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. They were validated by comparing their results with available experimental results. The models provided full details of the shear buckling and strength characteristics of LSBs, and showed the presence of considerable improvements to web shear buckling in LSBs and associated post-buckling strength. This paper presents the details of the finite element models of LSBs and the results. Both finite element analysis and experimental results showed that the current design rules in cold-formed steel codes are very conservative for the shear design of LSBs. The ultimate shear capacities from finite element analyses confirmed the accuracy of proposed shear strength equations for LSBs based on the North American specification and DSM design equations. Developed finite element models were used to investigate the reduction to shear capacity of LSBs when full height web side plates were not used or when only one web side plate was used, and these results are also presented in this paper.
Resumo:
Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange section with a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It is subjected to lateral distortional buckling when used as flexural members, which reduces its member moment capacity. An investigation into the flexural behaviour of LSBs using experiments and numerical analyses led to the development of new design rules for LSBs subject to lateral distortional buckling. However, the comparison of moment capacity results with the new design rules showed that they were conservative for some LSB sections while slightly unconservative for others due to the effects of section geometry. It is also unknown whether these design rules are applicable to other hollow flange sections such as hollow flange beams (HFB). This paper presents the details of a study into the lateral distortional buckling behaviour of hollow flange sections such as LSBs, HFBs and their variations. A geometrical parameter defined as the ratio of flange torsional rigidity to the major axis flexural rigidity of the web (GJf/EIxweb) was found to be a critical parameter in evaluating the lateral distortional buckling behaviour and moment capacities of hollow flange sections. New design rules were therefore developed by using a member slenderness parameter modified by K, where K is a function of GJf/EIxweb. The new design rules based on the modified slenderness parameter were found to be accurate in calculating the moment capacities of not only LSBs and HFBs, but also other types of hollow flange sections.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed using a patented dual electric resistance welding and cold-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a slender web, and is commonly used as flexural members. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their moment capacities. Unlike lateral torsional buckling, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and cross sectional change due to web distortion. Therefore a detailed investigation into the lateral buckling behaviour of LSB flexural members was undertaken using experiments and finite element analyses. This paper presents the details of suitable finite element models developed to simulate the behaviour and capacity of LSB flexural members subject to lateral buckling. The models included all significant effects that influence the ultimate moment capacities of such members, including material inelasticity, lateral distortional buckling deformations, web distortion, residual stresses, and geometric imperfections. Comparison of elastic buckling and ultimate moment capacity results with predictions from other numerical analyses and available buckling moment equations, and experimental results showed that the developed finite element models accurately predict the behaviour and moment capacities of LSBs. The validated model was then used in a detailed parametric study that produced accurate moment capacity data for all the LSB sections and improved design rules for LSB flexural members subject to lateral distortional buckling.
Resumo:
Cold-formed steel beams are increasingly used as floor joists and bearers in buildings. Their behaviour and moment capacities are influenced by lateral-torsional buckling when they are not laterally restrained adequately. Past research on lateral-torsional buckling has concentrated on hot-rolled steel beams. Hence a numerical study was undertaken to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending. For this purpose a finite element model was developed using ABAQUS and its accuracy was verified using available numerical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional buckling behaviour and capacity of cold-formed steel beams under varying conditions. The moment capacity results were compared with the predictions from the current design rules in many cold-formed steel codes and suitable recommendations were made. European design rules were found to be conservative while Australian/New Zealand and North American design rules were unconservative. Hence the moment capacity design equations in these codes were modified in this paper based on the available finite element analysis results. This paper presents the details of the parametric study, recommendations to current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams.
Resumo:
The use of cold-formed steel members as structural columns and beams in residential, industrial and commercial buildings has increased significantly in recent times. This study is focused on the use of cold-formed steel sections as flexural members subject to lateral-torsional buckling. For this purpose a finite element model of a simply supported lipped channel beam under uniform bending was developed, validated using available numerical and experimental results, and used in a detailed parametric study. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in the cold-formed steel structures codes of Australia, New Zealand, North America and Europe. European design rules were found to be conservative while Australian and American design rules were unsafe. This paper presents the results of the numerical study, the comparison with the current design rules and the new proposed design rules.
Resumo:
Facial expression is one of the main issues of face recognition in uncontrolled environments. In this paper, we apply the probabilistic linear discriminant analysis (PLDA) method to recognize faces across expressions. Several PLDA approaches are tested and cross-evaluated on the Cohn-Kanade and JAFFE databases. With less samples per gallery subject, high recognition rates comparable to previous works have been achieved indicating the robustness of the approaches. Among the approaches, the mixture of PLDAs has demonstrated better performances. The experimental results also indicate that facial regions around the cheeks, eyes, and eyebrows are more discriminative than regions around the mouth, jaw, chin, and nose.