206 resultados para CAPACITIES
Resumo:
Cold-formed steel beams are increasingly used as floor joists and bearers in buildings and often their behaviour and moment capacities are influenced by lateral-torsional buckling. With increasing usage of cold-formed steel beams their fire safety design has become an important issue. Fire design rules are commonly based on past research on hot-rolled steel beams. Hence a detailed parametric study was undertaken using validated finite element models to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending at uniform elevated temperatures. The moment capacity results were compared with the predictions from the available ambient temperature and fire design rules and suitable recommendations were made. European fire design rules were found to be over-conservative while the ambient temperature design rules could not be used based on single buckling curve. Hence a new design method was proposed that includes the important non-linear stress-strain characteristics observed for cold-formed steels at elevated temperatures. Comparison with numerical moment capacities demonstrated the accuracy of the new design method. This paper presents the details of the parametric study, comparisons with current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams at elevated temperatures.
Resumo:
Chemical treatments of kaolins to produce nanocrystalline or "X-ray amorphous", stable aluminosilicates with variable - but reproducible - types of micro- and meso-porosity have been developed. These materials show cation exchange capacities and surface area values significantly higher (ranging from 10x to 100x) than kaolin and show good acid resistance to pH~3.0. The combination of these properties offers strong potential for many new applications of kaolin-derived materials in large worldwide markets such as environmental remediation and catalysis. Kaolin amorphous derivative (KAD) is well-suited to removal of many toxic metals down to ppb range from acid mine drainage. Engineering development trials of the KAD manufacturing process and the utilisation of KAD in polluted waters such as acid mine drainage indicates that scale-up from bench-scale is not a barrier to market entry.
Resumo:
The regulation of overweight trucks is of increasing importance. Quickly growing heavy vehicle volumes over-proportionally contribute to roadway damage. Raising maintenance costs and compromised road safety are also becoming a major concern to managing agencies. Minimizing pavement wear is done by regulating overloaded trucks on major highways at weigh stations. However, due to lengthy inspections and insufficient capacities, weigh stations tend to be inefficient. New practices, using Radio Frequency Identification (RFID) transponders and weigh-in-motion technologies, called preclearance programs, have been set up in a number of countries. The primary aim of this study is to investigate the current issues with regard to the implementation and operation of the preclearance program. The State of Queensland, Australia, is used as a case study. The investigation focuses on three aspects; the first emphasizes on identifying the need for improvement of the current regulation programs in Queensland. Second, the operators of existing preclearance programs are interviewed for their lessons-learned and the marketing strategies used for promoting their programs. The trucking companies in Queensland are interviewed for their experiences with the current weighing practices and attitudes toward the potential preclearance system. Finally, the estimated benefit of the preclearance program deployment in Queensland is analyzed. The penultimate part brings the former four parts together and provides the study findings and recommendations. The framework and study findings could be valuable inputs for other roadway agencies considering a similar preclearance program or looking to promote their existing ones.
Resumo:
Amorphous derivatives of kaolin group minerals characterized by high specific surfaces and/or high cation exchange capacities and a .sup.27 AL MAS NMR spectrum having a dominant peak at about 55 ppm relative to Al(H.sub.2 O).sub.6.sup.3+. Such derivatives are prepared by reacting a kaolin group mineral with a reagent, such as, an alkali metal halide or an ammonium halide which converts the majority of the octahedrally coordinated aluminum in the kaolin group mineral to tetrahedrally coordinated aluminum. Such derivatives show high selectivity in its cation exchange towards the metals: Pb.sup.2+, Cu.sup.2+, Cd.sup.2+, Ni.sup.2+, CO.sup.2+, Cr.sup.3+, Sr.sup.2-, Zn.sup.2+, Nd.sup.3+ and UO.sub.2.sup.+.
Resumo:
ICT integration has been advocated to provide opportunities to improve students’ achievement and engagement through transforming the educational setting. A valuable tool that contributes in enhancing and developing students’ cognitive skills for lifelong learning, ICT integration has introduced a new educational philosophy, shifting the role of students into a more central position in the pedagogical processes. Kuwait, as with many other countries, has recently planned ICT integration to develop its citizen’s capacities. This study sought to capture the principals’, teachers’, and students’ perceptions of ICT integration in pedagogical activities, as well as how ICT is being used for learning and teaching activities in three ICT leading Kuwaiti secondary schools. Interviews with principals, teachers, and students were conducted, along with an open-ended questionnaire for the teachers, researcher observations, and document analysis. The findings revealed that ICT integration in Kuwait needed to be reinforced to accomplish the ICT integration objectives. A call for further support for teachers, and a reconsideration of the ICT integration strategies were also recommended.
Resumo:
This paper presents the direct strength method (DSM) equations for cold-formed steel beams subject to shear. Light gauge cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold-formed lipped channel beams (LCB), LiteSteel beams (LSB) and hollow flange beams (HFB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of cold-formed web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the flange and web elements and ignore the post-buckling strength. Hence experimental and numerical studies were conducted to investigate the shear behaviour and strength of LSBs, LCBs and HFBs. New direct strength method (DSM) based design equations were proposed to determine the ultimate shear capacities of cold-formed steel beams. An improved equation for the higher elastic shear buckling coefficient of cold-formed steel beams was proposed based on finite element analysis results and included in the DSM design equations. A new post-buckling coefficient was also introduced in the DSM equation to include the available post-buckling strength of cold-formed steel beams.
Resumo:
Ian Hunter's early work on the history of literature education and the emergence of English as school subject issued a bold challenge to traditional accounts that have in the main focused on English either as knowledge of a particular field or as ideology. The alternative proposal put forward by Hunter and supported by detailed historical analysis is that English exists as a series of historically contingent techniques and practices for shaping the self-managing capacities of children. The challenge for the field is to advance this historical work and to examine possible implications for English teaching.
Resumo:
Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.
Resumo:
Recent fire research into the behaviour of light gauge steel frame (LSF) wall systems has devel-oped fire design rules based on Australian and European cold-formed steel design standards, AS/NZS 4600 and Eurocode 3 Part 1.3. However, these design rules are complex since the LSF wall studs are subjected to non-uniform elevated temperature distributions when the walls are exposed to fire from one side. Therefore this paper proposes an alternative design method for routine predictions of fire resistance rating of LSF walls. In this method, suitable equations are recommended first to predict the idealised stud time-temperature pro-files of eight different LSF wall configurations subject to standard fire conditions based on full scale fire test results. A new set of equations was then proposed to find the critical hot flange (failure) temperature for a giv-en load ratio for the same LSF wall configurations with varying steel grades and thickness. These equations were developed based on detailed finite element analyses that predicted the axial compression capacities and failure times of LSF wall studs subject to non-uniform temperature distributions with varying steel grades and thicknesses. This paper proposes a simple design method in which the two sets of equations developed for time-temperature profiles and critical hot flange temperatures are used to find the failure times of LSF walls. The proposed method was verified by comparing its predictions with the results from full scale fire tests and finite element analyses. This paper presents the details of this study including the finite element models of LSF wall studs, the results from relevant fire tests and finite element analyses, and the proposed equations.
Resumo:
Current design rules for determining the member strength of cold-formed steel columns are based on the effective length of the member and a single column capacity curve for both pin-ended and fixed-ended columns. This research has reviewed the use of AS/NZS 4600 design rules for their accuracy in determining the member compression capacities of slender cold-formed steel columns using detailed numerical studies. It has shown that AS/NZS 4600 design rules accurately predicted the capacities of pinned and fixed ended columns undergoing flexural buckling. However, for fixed ended columns undergoing flexural-torsional buckling, it was found that current AS/NZS 4600 design rules did not include the beneficial effect of warping fixity. Therefore AS/NZS 4600 design rules were found to be excessively conservative and hence uneconomical in predicting the failure loads obtained from tests and finite element analyses of fixed-ended lipped channel columns. Based on this finding, suitable recommendations have been made to modify the current AS/NZS 4600 design rules to more accurately reflect the results obtained from the numerical and experimental studies conducted in this research. This paper presents the details of this research on cold-formed steel columns and the results.
Resumo:
This paper has presented the details of an investigation into the flexural and flexuraltorsional buckling behaviour of cold-formed structural steel columns with pinned and fixed ends. Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns. This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural and flexural torsional buckling. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Shear behaviour of LCBs with web openings is more complicated while their shear strengths are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed experimental study involving 40 shear tests was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at midspan until failure. This paper presents the details of this experimental study and the results of their shear capacities and behavioural characteristics. Experimental results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations have been proposed for the shear strength of LCBs with web openings based on the experimental results from this study.
Resumo:
Cold-formed steel Lipped Channel Beams (LCB) with web openings are commonly used as floor joists and bearers in building structures. The shear behaviour of these beams is more complicated and their shear capacities are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed numerical study was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Finite element models of simply supported LCBs under a mid-span load with aspect ratios of 1.0 and 1.5 were developed and validated by comparing their results with test results. They were then used in a detailed parametric study to investigate the effects of various influential parameters. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative. Improved design equations were therefore proposed for the shear strength of LCBs with web openings based on both experimental and numerical results. This paper presents the details of finite element modelling of LCBs with web openings, validation of finite element models, and the development of improved shear design rules. The proposed shear design rules in this paper can be considered for inclusion in the future versions of cold-formed steel design codes.
Resumo:
In 2010, six Threshold Learning Outcomes (TLOs) for law were developed by the Australian Learning and Teaching Council's Discipline Scholars: Law. The final of these outcomes, TLO 6, concerns self-management. This thesis examines strategies for implementing self-management in Australian legal education by first contextualising the development of TLO 6 in light of other relevant national and international developments in higher education, and secondly, analysing this learning outcome through the lens of Self-Determination Theory (SDT), an influential branch of educational psychology. It is argued that the central concept of autonomous self-regulation in SDT provides insights into factors that are relevant to law students’ capacities for long-term self-management, which is reinforced by analysis of the literature on law students’ distress. Accordingly, curriculum design that supports students’ autonomy may simultaneously promote students’ self-management capacities. The discussion of theoretical and practical perspectives on autonomy supportive curriculum design in this thesis thus illuminates potential pedagogical approaches for the implementation of TLO 6 in Australian legal curricula.
Resumo:
Oceania has a relatively low level of crime prevalence yet in the smaller and under-developed PICs we have shown that transnational crime has become increasingly common. A risk contained but potentially dangerous if state failure or fragility undermines law enforcement capacities. We predict that as the pace of globalization quickens and the demand for raw materials and resources grows some parts of the Pacific will be prone to criminal enterprises run by both indigenous and foreign crime groups. Australia and New Zealand will remain attractors of illicit goods notably ATS but will in turn be source countries for diminishing fish stock such as beche de mere and abalone as well forest timber. Finally the role of states such as Australia and New Zealand in helping to maintain law enforcement capacities throughout the region will be crucial if organized crime in Oceania is to be kept in check while demand for illicit resources grow.