118 resultados para Bone Mineral Density
Resumo:
Most research virtually ignores the important role of a blood clot in supporting bone healing. In this study, we investigated the effects of surface functional groups carboxyl and alkyl on whole blood coagulation, complement activation and blood clot formation. We synthesised and tested a series of materials with different ratios of carboxyl (–COOH) and alkyl (–CH3, –CH2CH3 and –(CH2)3CH3) groups. We found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/– CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of coagulation activation. The pattern of complement activation was entirely similar to that of surface-induced coagulation. All material coated surfaces resulted in clots with thicker fibrin in a denser network at the clot/material interface and a significantly slower initial fibrinolysis when compared to uncoated glass surfaces. The amounts of platelet-derived growth factor-AB (PDGF-AB) and transforming growth factor-b (TGF-b1) released from an intact clot were higher than a lysed clot. The release of PDGF-AB was found to be correlated with the fibrin density. This study demonstrated that surface chemistry can significantly influence the activation of blood coagulation and complement system, resultant clot structure, susceptibility to fibrinolysis as well as release of growth factors, which are important factors determining the bone healing process.
Resumo:
This study investigated the effect of a calcium phosphate (CaP) coating onto a polycaprolactone melt electrospun scaffold and in vitro culture conditions on ectopic bone formation in a subcutaneous rat model. The CaP coating resulted in an increased alkaline phosphatase activity (ALP) in ovine osteoblasts regardless of the culture conditions and this was also translated into higher levels of mineralisation. A subcutaneous implantation was performed and increasing ectopic bone formation was observed over time for the CaPcoated samples previously cultured in osteogenic media whereas the corresponding non-coated samples displayed a lag phase before bone formation occurred from 4 to 8 weeks post-implantation. Histology and immunohistochemistry revealed bone fill through the scaffolds 8 weeks post-implantation for coated and non-coated specimens and that ALP, osteocalcin and collagen 1 were present at the ossification front and in the bone tissues. Vascularisation in the vicinity of the bone tissues was also observed indicating that the newly formed bone was not deprived of oxygen and nutrients.We found that in vitro osteogenic induction was essential for achieving bone formation and CaP coating accelerated the osteogenic process. We conclude that high cell density and preservation of the collagenous and mineralised extracellular matrix secreted in vitro are factors of importance for ectopic bone formation.
Resumo:
Human parathyroid hormone (hPTH) is currently the only treatment for osteoporosis that forms new bone. Previously we described a fish equivalent, Fugu parathyroid hormone 1 (fPth1) which has hPTH-like biological activity in vitro despite fPth1(1–34) sharing only 53% identity with hPTH(1–34). Here we demonstrate the in vivo actions of fPth1(1–34) on bone. In study 1, young male rats were injected intermittently for 30 days with fPth1 [30 μg–1000 μg/kg body weight (b.w.), (30fPth1–1000fPth1)] or hPTH [30 μg–100 μg/kg b.w. (30hPTH–100hPTH)]. In proximal tibiae at low doses, the fPth1 was positively correlated with trabecular bone volume/total volume (TbBV/TV) while hPTH increased TbBV/TV, trabecular thickness (TbTh) and trabecular number (TbN). 500fPth1 and 1000fPth1 increased TbBV/TV, TbTh, TbN, mineral apposition rate (MAR) and bone formation rate/bone surface (BFR/BS) with a concomitant decrease in osteoclast surface and number. In study 2 ovariectomized (OVX), osteopenic rats and sham operated (SHAM) rats were injected intermittently with 500 μg/kg b.w. of fPth1 (500fPth1) for 11 weeks. 500fPth1 treatment resulted in increased TbBV/TV (151%) and TbTh (96%) in the proximal tibiae due to increased bone formation as assessed by BFR/BS (490%) and MAR (131%). The effect was restoration of TbBV/TV to SHAM levels without any effect on bone resorption. 500fPth1 also increased TbBV/TV and TbTh in the vertebrae (L6) and cortical thickness in the mid-femora increasing bone strength at these sites. fPth1 was similarly effective in SHAM rats. Notwithstanding the low amino acid sequence homology with hPTH (1–34), we have clearly established the efficacy of fPth1 (1–34) as an anabolic bone agent.
Resumo:
Musculoskeletal health can be compromised by breast cancer treatment. In particular, bone loss and arthralgias are prevalent side effects experienced by women treated with chemotherapy and/or adjuvant endocrine therapy. Bone loss leads to osteoporosis and related fractures, while arthralgias threaten quality of life and compliance to treatment. Because the processes that lead to these musculoskeletal problems are initiated when treatment begins, early identification of women who may be at higher risk of developing problems, routine monitoring of bone density and pain at certain stages of treatment, and prudent application of therapeutic interventions are key to preventing and/or minimizing musculoskeletal sequelae. Exercise may be a particularly suitable intervention strategy because of its potential to address a number of impairments; it may slow bone loss, appears to reduce joint pain in noncancer conditions, and improves other breast cancer outcomes. Research efforts continue in the areas of etiology, measurement, and treatment of bone loss and arthralgias. The purpose of this review is to provide an overview of the current knowledge on the management and treatment of bone loss and arthralgias in breast cancer survivors and to present a framework for rehabilitation care to preserve musculoskeletal health in women treated for breast cancer.
Resumo:
Finite element models of bones can be created by deriving geometry from anx-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticityversus density relationship. Many elasticity–density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions – longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each directionwere determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined.A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.
Resumo:
The effects of estrogen deficiency on bone characteristics are site-dependent, with the most commonly studied sites being appendicular long bones (proximal femur and tibia) and axial bones (vertebra). The effect on the maxillary and mandibular bones is still inconsistent and requires further investigation. This study was designed to evaluate bone quality in the posterior maxilla of ovariectomized rats in order to validate this site as an appropriate model to study the effect of osteoporotic changes. Methods: Forty-eight 3-month-old female Sprague-Dawley rats were randomly divided into two groups: an ovariectomized group (OVX, n=24) and Sham-operated group (SHAM, n=24). Six rats were randomly sacrificed from both groups at time points 8, 12, 16 and 20 weeks. The samples from tibia and maxilla were collected for Micro CT and histological analysis. For the maxilla, the volume of interest (VOI) area focused on the furcation areas of the first and second molar. Trabecular bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th.), trabecular number (Tb.N.), trabecular separation (Tb.Sp.), and connectivity density (Conn.Dens) were analysed after Micro CT scanning. Results: At 8 weeks the indices BV/TV, Tb.Sp, Tb.N and Conn.Dens showed significant differences (P<0.05) between the OVX and SHAM groups in the tibia. Compared with the tibia, the maxilla developed osteoporosis at a later stage, with significant changes in maxillary bone density only occurring after 12 weeks. Compared with the SHAM group, both the first and second molars of the OVX group showed significantly decreased BV/TV values from 12 weeks, and these changes were sustained through 16 and 20 weeks. For Tb.Sp, there were significant increases in bone values for the OVX group compared with the SHAM group at 12, 16 and 20 weeks. Histological changes were highly consistent with Micro CT results. Conclusion: This study established a method to quantify the changes of intra-radicular alveolar bone in the posterior maxilla in an accepted rat osteoporosis model. The degree of the osteoporotic changes to trabecular bone architecture is site-dependent and at least 3 months are required for the osteoporotic effects to be apparent in the posterior maxilla following rat OVX.
Resumo:
Optimal bone metabolism is the result of hormonal, nutritional, and mechanical harmony, and a deficit in one area is usually impossible to overcome by improvements in others. Exercise during growth influences bone modeling locally at the regions being loaded, whereas calcium is thought to act systemically to influence bone remodeling. Despite acting through different mechanisms, a growing body of research suggests that exercise and calcium may not operate independently. Low dietary calcium intake or reduced bioavailability may minimize the adaptive response to exercise-induced bone loading. Conversely, adequate levels of calcium intake can maximize the positive effect of physical activity on bone health during the growth period of children and adolescents. Research also suggests that adequate levels of calcium intake can maximize bone density at the regions being loaded during exercise. Achieving optimal bone health and minimizing one’s risk of osteoporotic fracture later in life depend on a lifelong approach. This approach relies on the establishment of an optimum level of bone during the growth years, with a subsequent goal to maintain and slow the rate of age-related bone loss thereafter. Exercise, adequate nutrition, and optimal hormone levels are the components that influence the bone outcome. Making healthy nutritional choices, engaging in weight-bearing physical activity, and ensuring optimal hormone levels during growth provides a window of opportunity to build optimal bone mass, to reduce the risk of fracture later in life. Concurrent management of fracture risk with a physical activity prescription, adequate nutrition, and pharmacotherapy for osteoporosis when required offers the best approach to optimal bone health throughout adulthood.
Resumo:
The origin of terrestrial tetrapods was a key event in vertebrate evolution, yet how and when it occurred remains obscure, due to scarce fossil evidence. Here, we show that the study of palaeopathologies, such as broken and healed bones, can help elucidate poorly understood behavioural transitions such as this. Using high-resolution finite element analysis, we demonstrate that the oldest known broken tetrapod bone, a radius of the primitive stem tetrapod Ossinodus pueri from the mid-Viséan (333 million years ago) of Australia, fractured under a high-force, impact-type loading scenario. The nature of the fracture suggests that it most plausibly occurred during a fall on land. Augmenting this are new osteological observations, including a preferred directionality to the trabecular architecture of cancellous bone. Together, these results suggest that Ossinodus, one of the first large (>2m length) tetrapods, spent a significant proportion of its life on land. Our findings have important implications for understanding the temporal, biogeographical and physiological contexts under which terrestriality in vertebrates evolved. They push the date for the origin of terrestrial tetrapods further back into the Carboniferous by at least two million years. Moreover, they raise the possibility that terrestriality in vertebrates first evolved in large tetrapods in Gondwana rather than in small European forms, warranting a re-evaluation of this important evolutionary event.
Resumo:
Background The genetic mutation resulting in osteogenesis imperfecta (OI) type V was recently characterised as a single point mutation (c.-14C > T) in the 5' untranslated region (UTR) of IFITM5, a gene encoding a transmembrane protein with expression restricted to skeletal tissue. This mutation creates an alternative start codon and has been shown in a eukaryotic cell line to result in a longer variant of IFITM5, but its expression has not previously been demonstrated in bone from a patient with OI type V. Methods Sanger sequencing of the IFITM5 5' UTR was performed in our cohort of subjects with a clinical diagnosis of OI type V. Clinical data was collated from referring clinicians. RNA was extracted from a bone sample from one patient and Sanger sequenced to determine expression of wild-type and mutant IFITM5. Results: All nine subjects with OI type V were heterozygous for the c.-14C > T IFITM5 mutation. Clinically, there was heterogeneity in phenotype, particularly in the manifestation of bone fragility amongst subjects. Both wild-type and mutant IFITM5 mRNA transcripts were present in bone. Conclusions The c.-14C > T IFITM5 mutation does not result in an RNA-null allele but is expressed in bone. Individuals with identical mutations in IFITM5 have highly variable phenotypic expression, even within the same family.
Resumo:
A computed tomography number to relative electron density (CT-RED) calibration is performed when commissioning a radiotherapy CT scanner by imaging a calibration phantom with inserts of specified RED and recording the CT number displayed. In this work, CT-RED calibrations were generated using several commercially available phantoms to observe the effect of phantom geometry on conversion to electron density and, ultimately, the dose calculation in a treatment planning system. Using an anthropomorphic phantom as a gold standard, the CT number of a material was found to depend strongly on the amount and type of scattering material surrounding the volume of interest, with the largest variation observed for the highest density material tested, cortical bone. Cortical bone gave a maximum CT number difference of 1,110 when a cylindrical insert of diameter 28 mm scanned free in air was compared to that in the form of a 30 × 30 cm2 slab. The effect of using each CT-RED calibration on planned dose to a patient was quantified using a commercially available treatment planning system. When all calibrations were compared to the anthropomorphic calibration, the largest percentage dose difference was 4.2 % which occurred when the CT-RED calibration curve was acquired with heterogeneity inserts removed from the phantom and scanned free in air. The maximum dose difference observed between two dedicated CT-RED phantoms was ±2.1 %. A phantom that is to be used for CT-RED calibrations must have sufficient water equivalent scattering material surrounding the heterogeneous objects that are to be used for calibration.
Resumo:
Genetic studies based on cohorts with rare and extreme bone phenotypes have shown that the LRP5 gene is an important genetic modulator of BMD. Using family-based and case-control approaches, this study examines the role of the LRP5 gene in determining normal population variation of BMD and describes significant association and suggestive linkage between LRP5 gene polymorphisms and BMD in >900 individuals with a broad range of BMD. Introduction: Osteoporosis is a common, highly heritable condition determined by complex interactions of genetic and environmental etiologies. Genetic factors alone can account for 50-80% of the interindividual variation in BMD. Mutations in the LRP5 gene on chromosome 11q12-13 have been associated with rare syndromes characterized by extremely low or high BMD, but little is known about the contribution of this gene to the development of osteoporosis and determination of BMD in a normal population. Materials and Methods: To examine the entire spectrum of low to high BMD, 152 osteoporotic probands, their families (597 individuals), and 160 women with elevated BMD (T score > 2.5) were recruited. BMD at the lumbar spine, femoral neck, and hip were measured in each subject using DXA. Results: PAGE sequencing of the LRP5 gene revealed 10 single nucleotide polymorphisms (SNPs), 8 of which had allele frequencies of >5%, in exons 8, 9, 10, 15, and 18 and in introns 6, 7, and 21. Within families, a strong association was observed between an SNP at nucleotide C171346A in intron 21 and total hip BMD (p < 1 × 10-5 in men only, p = 0.0019 in both men and women). This association was also observed in comparisons of osteoporotic probands and unrelated elevated BMD in women (p = 0.03), along with associations with markers in exons 8 (C135242T, p = 0.007) and 9 (C141759T, p = 0.02). Haplotypes composed of two to three of the SNPs G121513A, C135242T, G138351A, and C141759T were strongly associated with BMD when comparing osteoporotic probands and high BMD cases (p < 0.003). An SNP at nucleotide C165215T in exon 18 was linked to BMD at the lumbar spine, femoral neck, and total hip (parametric LOD scores = 2.8, 2.5, and 2.2 and nonparametric LOD scores = 0.3, 1.1, and 2.2, respectively) but was not genetically associated with BMD variation. Conclusion: These results show that common LRP5 polymorphisms contribute to the determination of BMD in the general population.
Resumo:
Objectives Hematoma quality (especially the fibrin matrix) plays an important role in the bone healing process. Here, we investigated the effect of interleukin-1 beta (IL-1β) on fibrin clot formation from platelet-poor plasma (PPP). Methods Five-milliliter of rat whole-blood samples were collected from the hepatic portal vein. All blood samples were firstly standardized via a thrombelastograph (TEG), blood cell count, and the measurement of fibrinogen concentration. PPP was prepared by collecting the top two-fifths of the plasma after centrifugation under 400 × g for 10min at 20°C. The effects of IL-1β cytokines on artificial fibrin clot formation from PPP solutions were determined by scanning electronic microscopy (SEM), confocal microscopy (CM), turbidity, and clot lysis assays. Results The lag time for protofibril formation was markedly shortened in the IL-1β treatment groups (243.8 ± 76.85 in the 50 pg/mL of IL-1β and 97.5 ± 19.36 in the 500 pg/mL of IL-1β) compared to the control group without IL-1β (543.8 ± 205.8). Maximal turbidity was observed in the control group. IL-1β (500 pg/mL) treatment significantly decreased fiber diameters resulting in smaller pore sizes and increased density of the fibrin clot structure formed from PPP (P < 0.05). The clot lysis assay revealed that 500 pg/mL IL-1β induced a lower susceptibility to dissolution due to the formation of thinner and denser fibers. Conclusion IL-1β can significantly influence PPP fibrin clot structure, which may affect the early bone healing process.
Resumo:
High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52-kb intronic deletion 3'). Family members were assessed for HBM segregation with identified variants. Three-dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM ( approximately prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non-LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5-HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST-LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z-scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z-scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only account for a very small proportion ( approximately 3%) of HBM individuals, suggesting the great majority are explained by either unknown monogenic causes or polygenic inheritance.