144 resultados para Bidirectional AC-DC converter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typical inductive power transfer (IPT) systems employ two power conversion stages to generate a high-frequency primary current from low-frequency utility supply. This paper proposes a matrix-converter-based IPT system, which employs high-speed SiC devices to facilitate the generation of high-frequency current through a single power conversion stage. The proposed matrix converter topology transforms a three-phase low-frequency voltage system to a high-frequency single-phase voltage, which, in turn, powers a series compensated IPT system. A comprehensive mathematical model is developed and power losses are evaluated to investigate the efficiency of the proposed converter topology. Theoretical results are presented with simulations, which are performed in MATLAB/Simulink, in comparison to a conventional two-stage converter. Experimental evident of a prototype IPT system is also presented to demonstrate the applicability of the proposed concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bit-stream-based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. This study presents a novel family of three-phase space vector modulators, which are based on the bit-stream technique and suitable for three-phase inverter systems. Each of the proposed modulators simultaneously converts a two-phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulators do not require carrier oscillators, trigonometric functions or, in some cases, sector detectors. A complete three-phase modulator can be implemented in as few as 102 logic elements. The performance of the proposed modulators is compared through simulation and experimental testing of a 6 kW, three-phase DC-to-AC inverter. Subject to limits on the modulation index, the proposed modulators deliver spread-spectrum output currents with total harmonic distortion comparable to a standard carrier-based space vector pulse width modulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When, in 1977, the Australian electorate provided a double majority to effect a change of section 72 of the Commonwealth Constitution requiring judges of the High Court of Australia to retire at the age of 70 years old, I doubt we understood the continuing capacity of these esteemed members of the judiciary. For the opportunity to sit and talk with Ian Callinan AC who, in compliance with that amendment, retired from the High Court in September 2007, I needed to wait until he returned from The Hague where he was sitting as a Judge ad hoc on the International Court of Justice. Although a native of Casino, New South Wales, Mr Callinan is regarded as a Queenslander. Indeed, he grew up in Brisbane, finished high school at Brisbane Grammar and graduated in law at The University of Queensland. Appointed in 1978 as a Queen’s Counsel, Mr Callinan enjoyed this period of his legal career and we discussed an aspect of the Christopher Skase case, which reinforced my belief that Mr Callinan is an incredibly skilful advocate. On 14 September 1998, ABC Four Corners broadcasted the views of some prominent Australians on the appointment of Mr Callinan to the High Court. In assessing the type of person Mr Callinan is, Tony Morris QC said: “Ian Callinan isn't a coward”, while former Commonwealth Attorney-General, Michael Lavarch, said: “He was regarded as an absolutely outstanding criminal lawyer within the Queensland legal profession, I mean really a top-notch advocate”. I was not interested in raising any of the controversial issues that Mr Callinan has encountered as an advocate in high profile matters. I wanted to know how he felt about his time on the High Court, what his thoughts are on the operation of the High Court, the IP cases he decided, the real life issues that he feels impact on counsel who are appearing before the High Court and the people he regarded as role models. During our conversation, Mr Callinan laughed often and when he did his eyes lit up, revealing his passion for life. He is an incredibly genuine Australian who loved his time as a barrister, enjoyed his role on the High Court, enjoys his current job as mediator, loves writing novels, has a great desire for continual improvement in the quality of legal education and legal advocacy and sees a need for change in IP law. When I asked: “So, what might the future hold for you?”, he laughed and said: “Well, at my age I don’t have a long horizon time”. I said: “Just enjoy the journey?”, to which Mr Callinan responded: “Exactly”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform dc magnetic field H and an ac electric field E isomers with opposite chirality move in opposite directions. Such a mechanism could have a significant impact on a wide range of emerging technologies. The component of the chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin angular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle responds to the applied torque as a small gyroscope. © 2012 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal asymmetric glow dc discharge in the thermal furnace converted into the efficient PECVD system was imaged to adjust the structure of the plasma column to the two possible localizations of the process zone. The visualization revealed the possibility to use short and long discharge configurations for the plasma-enabled growth and processing of various nanostructures in the modified setup. Images of the discharge in the two localizations are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosecond dynamics of two separated discharge cycles in an asymmetric dielectric barrier discharge is studied using time-resolved current and voltage measurements synchronized with high-speed (∼5 ns) optical imaging. Nanosecond dc pulses with tailored raise and fall times are used to generate solitary filamentary structures (SFSs) during the first cycle and a uniform glow during the second. The SFSs feature ∼1.5 mm thickness, ∼1.9 A peak current, and a lifetime of several hundred nanoseconds, at least an order of magnitude larger than in common microdischarges. This can be used in alternating localized and uniform high-current plasma treatments in various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the renewable energy sources whose outputs vary continuously, a Z-source current-type inverter has been proposed as a possible buck-boost alternative for grid-interfacing. With a unique X-shaped LC network connected between its dc power source and inverter topology, Z-source current-type inverter is however expected to suffer from compounded resonant complications in addition to those associated with its second-order output filter. To improve its damping performance, this paper proposes the careful integration of Posicast or three-step compensators before the inverter pulse-width modulator for damping triggered resonant oscillations. In total, two compensators are needed for wave-shaping the inverter boost factor and modulation ratio, and they can conveniently be implemented using first-in first-out stacks and embedded timers of modern digital signal processors widely used in motion control applications. Both techniques are found to damp resonance of ac filter well, but for cases of transiting from current-buck to boost state, three-step technique is less effective due to the sudden intermediate discharging interval introduced by its non-monotonic stepping (unlike the monotonic stepping of Posicast damping). These findings have been confirmed both in simulations and experiments using an implemented laboratory prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design of a dual Z-source inverter that can be used with either a single dc source or two isolated dc sources. Unlike traditional inverters, the integration of a properly designed Z-source network and semiconductor switches to the proposed dual inverter allows buck-boost power conversion to be performed over a wide modulation range with three-level output waveforms generated. The connection of an additional transformer to the inverter ac output also allows all generic wye- or delta-connected loads with three-wire or four-wire configuration to be supplied by the inverter. Modulation-wise, the dual inverter can be controlled using a carefully designed carrier-based pulse-width modulation (PWM) scheme that always will ensure balanced voltage boosting of the Z-source network, while simultaneously achieving reduced common-mode switching. Because of the omission of dead-time delays in the dual inverter PWM scheme, its switched common-mode voltage can be completely eliminated, unlike in traditional inverters where narrow common-mode spikes are still generated. Under semiconductor failure conditions, the presented PWM schemes can easily be modified to allow the inverter to operate without interruption and for cases where two isolated sources are used, zero common-mode voltage can still be ensured. These theoretical findings together with the inverter practicality have been confirmed both in simulations using PSIM with Matlab/Simulink coupler and experimentally using a laboratory implemented inverter prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design of a dual Z-source inverter that can be used with either a single dc source or two isolated dc sources. Unlike traditional inverters, the integration of a properly designed Z-source network and semiconductor switches to the proposed dual inverter allows buck-boost power conversion to be performed over a wide modulation range, with three-level output waveforms generated. The connection of an additional transformer to the inverter ac output also allows all generic wye-or delta-connected loads with three-wire or four-wire configuration to be supplied by the inverter. Modulationwise, the dual inverter can be controlled using a carefully designed carrier-based pulsewidth-modulation (PWM) scheme that will always ensure balanced voltage boosting of the Z-source network while simultaneously achieving reduced common-mode switching. Because of the omission of dead-time delays in the dual-inverter PWM scheme, its switched common-mode voltage can be completely eliminated, unlike in traditional inverters, where narrow common-mode spikes are still generated. Under semiconductor failure conditions, the presented PWM schemes can easily be modified to allow the inverter to operate without interruption, and for cases where two isolated sources are used, zero common-mode voltage can still be ensured. These theoretical findings, together with the inverter practicality, have been confirmed in simulations both using PSIM with Matlab/Simulink coupler and experimentally using a laboratory-implemented inverter prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel three-phase to single-phase matrix converter (TSMC) based bi-directional inductive power transfer (IPT) system for vehicle-to-grid (V2G) applications. In contrast to existing techniques, the proposed technique which employs a TSMC to drive an 8th order high frequency resonant network, requires only a single-stage power conversion process to facilitate bi-directional power transfer between electric vehicles (EVs) and a three-phase utility power supply. A mathematical model is presented to demonstrate that both magnitude and direction of power flow can be controlled by regulating either relative phase angles or magnitudes of voltages generated by converters. The viability of the proposed mathematical model is verified using simulated results of a 10 kW bi-directional IPT system and the results suggest that the proposed system is efficient, reliable and is suitable for high power applications which require contactless power transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix converter (MC) based bi-directional inductive power transfer (BD-IPT) systems are gaining popularity as an efficient and reliable technique with single stage grid integration as opposed to two stage grid integration of conventional grid connected BD-IPT systems. However MCs are invariably rich in harmonics and thus affect both power quality and power factor on the grid side. This paper proposes a mathematical model through which the grid side harmonics of MC based BD-IPT systems can accurately be estimated. The validity of the proposed mathematical model is verified using simulated results of a 3 kW BD-IPT system and results suggest that the MC based BD-IPT systems have a better power factor with higher power quality over conventional grid connected rectifier based systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new small full bridge module for MMCC research is presented. Each full bridge converter cell is a single small (65 × 30 mm) multilayer PCB with two low voltage high current (22 V, 40 A) integrated half bridge ICs and the necessary isolated control signals and auxiliary power supply (2500 V isolation). All devices are surface mount, minimising cell height (4 mm) and parasitic inductance. Each converter cell can be physically stacked with PCB connectors propagating the control signals and inter-cell power connections. Many cells can be trivially stacked to create a large multilevel converter leg with isolated auxiliary power and control signals. Any of the MMCC family members is then easily formed. With a change in placement of stacking connector, a parallel connection of bridges is also possible. Operation of a nine level parallel full bridge is demonstrated at 12 V and 384 kHz switching frequency delivering a 30 W 2 kHz sinewave into a resistive load. A number of new applications for this novel module aside from MMCC development are listed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microplasma generated between a stainless-steel capillary and water surface in ambient air with flowing argon as working gas appears as a bright spot at the tube orifice and expands to form a larger footprint on the water surface, and the dimensions of the bell-shaped microplasma are all below 1 mm. The electron density of the microplasma is estimated to be ranging from 5.32 × 109 cm−3 to 2.02 × 1014 cm−3 for the different operating conditions, which is desirable for generating abundant amounts of reactive species. A computational technique is adopted to fit the experimental emission from the N2 second positive system with simulation results. It is concluded that the vibrational temperature (more than 2000 K) is more than twice the gas temperature (more than 800 K), which indicates the non-equilibrium state of the microplasma. Both temperatures showed dependence on the discharge parameters (i.e., gas flow and discharge current). Such a plasma device could be arranged in arrays for applications utilizing plasmainduced liquid chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bidirectional Inductive Power Transfer (IPT) systems are preferred for Vehicle-to-Grid (V2G) applications. Typically, bidirectional IPT systems consist of high order resonant networks, and therefore, the control of bidirectional IPT systems has always been a difficulty. To date several different controllers have been reported, but these have been designed using steady-state models, which invariably, are incapable of providing an accurate insight into the dynamic behaviour of the system A dynamic state-space model of a bidirectional IPT system has been reported. However, currently this model has not been used to optimise the design of controllers. Therefore, this paper proposes an optimised controller based on the dynamic model. To verify the operation of the proposed controller simulated results of the optimised controller and simulated results of another controller are compared. Results indicate that the proposed controller is capable of accurately and stably controlling the power flow in a bidirectional IPT system.