113 resultados para Barba, Andrés
Resumo:
The mineral brianyoungite, a carbonate–sulphate of zinc, has been studied by scanning electron microscopy (SEM) with chemical analysis using energy dispersive spectroscopy (EDX) and Raman and infrared spectroscopy. Multiple carbonate stretching modes are observed and support the concept of non-equivalent carbonate units in the brianyoungite structure. Intense Raman band at 1056 cm−1 with shoulder band at 1038 cm−1 is assigned to the CO32− ν1 symmetric stretching mode. Two intense Raman bands at 973 and 984 cm−1 are assigned to the symmetric stretching modes of the SO42− anion. The observation of two bands supports the concept of the non-equivalence of sulphate units in the brianyoungite structure. Raman bands at 704 and 736 cm−1 are assigned to the CO32− ν4 bending modes and Raman bands at 507, 528, 609 and 638 cm−1 are assigned to the CO32− ν2 bending modes. Multiple Raman and infrared bands in the OH stretching region are observed, proving the existence of water and hydroxyl units in different molecular environments in the structure of brianyoungite. Vibrational spectroscopy enhances our knowledge of the molecular structure of brianyoungite.
Resumo:
The mineral aluminite has been studied using a number of techniques, including scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDX) and Raman and infrared spectroscopy. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a low intensity band at 1069 cm−1 which may be attributed to a carbonate symmetric stretching mode, indicating the presence of thaumasite. The observation of multiple bands in this ν4 spectral region offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3588 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3439 cm−1 to water stretching bands. Water stretching vibrations are observed at 3157, 3294, 3378 and 3439 cm−1. Vibrational spectroscopy enables an assessment of the molecular structure of aluminite to be made.
Resumo:
The mineral tilleyite-Y, a carbonate-silicate of calcium, has been studied by scanning electron microscopy with chemical analysis using energy dispersive spectroscopy (EDX) and Raman and infrared spectroscopy. Multiple carbonate stretching modes are observed and support the concept of non-equivalent carbonate units in the tilleyite structure. Multiple Raman and infrared bands in the OH stretching region are observed, proving the existence of water in different molecular environments in the structure of tilleyite. Vibrational spectroscopy offers new information on the mineral tilleyite.
Resumo:
We have undertaken a study of the tellurite mineral sonorite using electron microscopy with EDX combined with vibrational spectroscopy. Chemical analysis shows a homogeneous composition, with predominance of Te, Fe, Ce and In with minor amounts of S. Raman spectroscopy has been used to study the mineral sonoraite an examples of group A(XO3), with hydroxyl and water units in the mineral structure. The free tellurite ion has C3v symmetry and four modes, 2A1 and 2E. An intense Raman band at 734 cm−1 is assigned to the ν1 (TeO3)2− symmetric stretching mode. A band at 636 cm−1 is assigned to the ν3 (TeO3)2− antisymmetric stretching mode. Bands at 350 and 373 cm−1 and the two bands at 425 and 438 cm−1 are assigned to the (TeO3)2−ν2 (A1) bending mode and (TeO3)2−ν4 (E) bending modes. The sharp band at 3283 cm−1 assigned to the OH stretching vibration of the OH units is superimposed upon a broader spectral profile with Raman bands at 3215, 3302, 3349 and 3415 cm−1 are attributed to water stretching bands. The techniques of Raman and infrared spectroscopy are excellent for the study of tellurite minerals.
Resumo:
The approach to remove greenhouse gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals, the formation of hydromagnesite, dypingite and nesquehonite are possible, thus necessitating a study of such minerals. These minerals with a hydrotalcite-related formulae have been characterised by a combination of infrared and near infrared spectroscopy. Layered double hydroxides (also known as anionic clays or hydrotalcites) are a group of layered clay minerals described by the general formula: [M1–x2+Mx3+(OH)2]x+[An–]x/n∙mH2O. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030–7235 cm–1 and 10,490–10,570 cm–1 spectral ranges. Intense (CO3)2– symmetrical and anti-symmetrical stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen-bonded to the carbonate anion in the mineral structure. NIR spectroscopy offers a method for quickly analysing such materials.
Resumo:
The mineral lamprophyllite is fundamentally a silicate based upon tetrahedral siloxane units with extensive substitution in the formula. Lamprophyllite is a complex group of sorosilicates with general chemical formula given as A2B4C2Si2O7(X)4, where the site A can be occupied by strontium, barium, sodium, and potassium; the B site is occupied by sodium, titanium, iron, manganese, magnesium, and calcium. The site C is mainly occupied by titanium or ferric iron and X includes the anions fluoride, hydroxyl, and oxide. Chemical composition shows a homogeneous phase, composed of Si, Na, Ti, and Fe. This complexity of formula is reflected in the complexity of both the Raman and infrared spectra. The Raman spectrum is characterized by intense bands at 918 and 940 cm−1. Other intense Raman bands are found at 576, 671, and 707 cm−1. These bands are assigned to the stretching and bending modes of the tetrahedral siloxane units.
Resumo:
We have studied the mineral kaliborite. The sample originated from the Inder B deposit, Atyrau Province, Kazakhstan, and is part of the collection of the Geology Department of the Federal University of Ouro Preto, Minas Gerais, Brazil. The mineral is characterized by a single intense Raman band at 756 cm−1 assigned to the symmetric stretching modes of trigonal boron. Raman bands at 1229 and 1309 cm−1 are assigned to hydroxyl in-plane bending modes of boron hydroxyl units. Raman bands are resolved at 2929, 3041, 3133, 3172, 3202, 3245, 3336, 3398, and 3517 cm−1. These Raman bands are assigned to water stretching vibrations. A very intense sharp Raman band at 3597 cm−1 with a shoulder band at 3590 cm−1 is assigned to the stretching vibration of the hydroxyl units. The Raman data are complimented with infrared data and compared with the spectrum of kaliborite downloaded from the Arizona State University database. Differences are noted between the spectrum obtained in this work and that from the Arizona State University database. This research shows that minerals stored in a museum mineral collection age with time. Vibrational spectroscopy enhances our knowledge of the molecular structure of kaliborite.
Resumo:
Ambient ultrafine particle number concentrations (PNC) have inhomogeneous spatio-temporal distributions and depend on a number of different urban factors, including background conditions and distant sources. This paper quantitatively compares exposure to ambient ultrafine particles at urban schools in two cities in developed countries, with high insolation climatic conditions, namely Brisbane (Australia) and Barcelona (Spain). The analysis used comprehensive indoor and outdoor air quality measurements at 25 schools in Brisbane and 39 schools in Barcelona. PNC modes were analysed with respect to ambient temperature, land use and urban characteristics, combined with the measured elemental carbon concentrations, NOx (Brisbane) and NO2 (Barcelona). The trends and modes of the quantified weekday average daily cycles of ambient PNC exhibited significant differences between the two cities. PNC increases were observed during traffic rush hours in both cases. However, the mid-day peak was dominant in Brisbane schools and had the highest contribution to total PNC for both indoors and outdoors. In Barcelona, the contribution from traffic was highest for ambient PNC, while the mid-day peak had a slightly higher contribution for indoor concentrations. Analysis of the relationships between PNC and land use characteristics in Barcelona schools showed a moderate correlation with the percentage of road network area and an anti-correlation with the percentage of green area. No statistically significant correlations were found for Brisbane. Overall, despite many similarities between the two cities, school-based exposure patterns were different. The main source of ambient PNC at schools was shown to be traffic in Barcelona and mid-day new particle formation in Brisbane. The mid-day PNC peak in Brisbane could have been driven by the combined effect of background and meteorological conditions, as well as other local/distant sources. The results have implications for urban development, especially in terms of air quality mitigation and management at schools.