647 resultados para Appearance-based Navigation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of global navigation satellite systems (GNSS) provides a solution of many applied problems with increasingly higher quality and accuracy nowadays. Researches that are carried out by the Bavarian Academy of Sciences and Humanities in Munich (BAW) in the field of airborne gravimetry are based on sophisticated data processing from high frequency GNSS receiver for kinematic aircraft positioning. Applied algorithms for inertial acceleration determination are based on the high sampling rate (50Hz) and on reducing of such factors as ionosphere scintillation and multipath at aircraft /antenna near field effects. The quality of the GNSS derived kinematic height are studied also by intercomparison with lift height variations collected by a precise high sampling rate vertical scale [1]. This work is aimed at the ways of more accurate determination of mini-aircraft altitude by means of high frequency GNSS receivers, in particular by considering their dynamic behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Современный этап развития комплексов автоматического управления и навигации малогабаритными БЛА многократного применения предъявляет высокие требования к автономности, точности и миниатюрности данных систем. Противоречивость требований диктует использование функционального и алгоритмического объединения нескольких разнотипных источников навигационной информации в едином вычислительном процессе на основе методов оптимальной фильтрации. Получили широкое развитие бесплатформенные инерциальные навигационные системы (БИНС) на основе комплексирования данных микромеханических датчиков инерциальной информации и датчиков параметров движения в воздушном потоке с данными спутниковых навигационных систем (СНС). Однако в современных условиях такой подход не в полной мере реализует требования к помехозащищённости, автономности и точности получаемой навигационной информации. Одновременно с этим достигли значительного прогресса навигационные системы, использующие принципы корреляционно экстремальной навигации по оптическим ориентирам и цифровым картам местности. Предлагается схема построения автономной автоматической навигационной системы (АНС) для БЛА многоразового применения на основе объединения алгоритмов БИНС, спутниковой навигационной системы и оптической навигационной системы. The modern stage of automatic control and guidance systems development for small unmanned aerial vehicles (UAV) is determined by advanced requirements for autonomy, accuracy and size of the systems. The contradictory of the requirements dictates novel functional and algorithmic tight coupling of several different onboard sensors into one computational process, which is based on methods of optimal filtering. Nowadays, data fusion of micro-electro mechanical sensors of inertial measurement units, barometric pressure sensors, and signals of global navigation satellite systems (GNSS) receivers is widely used in numerous strap down inertial navigation systems (INS). However, the systems do not fully comply with such requirements as jamming immunity, fault tolerance, autonomy, and accuracy of navigation. At the same time, the significant progress has been recently demonstrated by the navigation systems, which use the correlation extremal principle applied for optical data flow and digital maps. This article proposes a new architecture of automatic navigation management system (ANMS) for small UAV, which combines algorithms of strap down INS, satellite navigation and optical navigation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

В статье представлено развитие принципа построения автоматической пилотажно-навигационной системы (АПНС) для беспилотного летательного аппарата (БЛА). Принцип заключается в синтезе комплексных систем управления БПЛА не только на основе использования алгоритмов БИНС, но и алгоритмов, объединяющих в себе решение задач формирования и отработки сформированной траектории резервированной системой управления и навигации. Приведены результаты аналитического исследования и данные летных экспериментов разработанных алгоритмов АПНС БЛА, обеспечивающих дополнительное резервирование алгоритмов навигации и наделяющих БЛА новым функциональной способностью по выходу в заданную точку пространства с заданной скоростью в заданный момент времени с учетом атмосферных ветровых возмущений. Предложена и испытана методика идентификации параметров воздушной атмосферы: направления и скорости W ветра. Данные летных испытаний полученного решения задачи терминальной навигации демонстрируют устойчивую работу синтезированных алгоритмов управления в различных метеоусловиях. The article presents a progress in principle of development of automatic navigation management system (ANMS) for small unmanned aerial vehicle (UAV). The principle defines a development of integrated control systems for UAV based on tight coupling of strap down inertial navigation system algorithms and algorithms of redundant flight management system to form and control flight trajectory. The results of the research and flight testing of the developed ANMS UAV algorithms are presented. The system demonstrates advanced functional redundancy of UAV guidance. The system enables new UAV capability to perform autonomous multidimensional navigation along waypoints with controlled speed and time of arrival taking into account wind. The paper describes the technique for real-time identification of atmosphere parameters such as wind direction and wind speed. The flight test results demonstrate robustness of the algorithms in diverse meteorological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metrictopological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a three-layered framework to monitor the positioning performance requirements of Real-time Relative Positioning (RRP) systems of the Cooperative Intelligent Transport Systems (C-ITS) that support Cooperative Collision Warning (CCW) applications. These applications exploit state data of surrounding vehicles obtained solely from the Global Positioning System (GPS) and Dedicated Short-Range Communications (DSRC) units without using other sensors. To this end, the paper argues the need for the GPS/DSRC-based RRP systems to have an autonomous monitoring mechanism, since the operation of CCW applications is meant to augment safety on roads. The advantages of autonomous integrity monitoring are essential and integral to any safety-of-life system. The autonomous integrity monitoring framework proposed necessitates the RRP systems to detect/predict the unavailability of their sub-systems and of the integrity monitoring module itself, and, if available, to account for effects of data link delays and breakages of DSRC links, as well as of faulty measurement sources of GPS and/or integrated augmentation positioning systems, before the information used for safety warnings/alarms becomes unavailable, unreliable, inaccurate or misleading. Hence, a monitoring framework using a tight integration and correlation approach is proposed for instantaneous reliability assessment of the RRP systems. Ultimately, using the proposed framework, the RRP systems will provide timely alerts to users when the RRP solutions cannot be trusted or used for the intended operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gaining invariance to camera and illumination variations has been a well investigated topic in Active Appearance Model (AAM) fitting literature. The major problem lies in the inability of the appearance parameters of the AAM to generalize to unseen conditions. An attractive approach for gaining invariance is to fit an AAM to a multiple filter response (e.g. Gabor) representation of the input image. Naively applying this concept with a traditional AAM is computationally prohibitive, especially as the number of filter responses increase. In this paper, we present a computationally efficient AAM fitting algorithm based on the Lucas-Kanade (LK) algorithm posed in the Fourier domain that affords invariance to both expression and illumination. We refer to this as a Fourier AAM (FAAM), and show that this method gives substantial improvement in person specific AAM fitting performance over traditional AAM fitting methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper overviews the development of a vision-based AUV along with a set of complementary operational strategies to allow reliable autonomous data collection in relatively shallow water and coral reef environments. The development of the AUV, called Starbug, encountered many challenges in terms of vehicle design, navigation and control. Some of these challenges are discussed with focus on operational strategies for estimating and reducing the total navigation error when using lower-resolution sensing modalities. Results are presented from recent field trials which illustrate the ability of the vehicle and associated operational strategies to enable rapid collection of visual data sets suitable for marine research applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper details the design and performance assessment of a unique collision avoidance decision and control strategy for autonomous vision-based See and Avoid systems. The general approach revolves around re-positioning a collision object in the image using image-based visual servoing, without estimating range or time to collision. The decision strategy thus involves determining where to move the collision object, to induce a safe avoidance manuever, and when to cease the avoidance behaviour. These tasks are accomplished by exploiting human navigation models, spiral motion properties, expected image feature uncertainty and the rules of the air. The result is a simple threshold based system that can be tuned and statistically evaluated by extending performance assessment techniques derived for alerting systems. Our results demonstrate how autonomous vision-only See and Avoid systems may be designed under realistic problem constraints, and then evaluated in a manner consistent to aviation expectations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The guardians of children brought to the Port Moresby General Hospital's Children's Outpatient Department with a chief complaint of diarrhoeal disease were questioned regarding their preference of glucose-based vs rice-based oral rehydration solution (ORS) in order to determine the acceptability of a rice-based ORS. Of the 93 guardians interviewed, greater than 60% preferred the glucose-based solution in its mixability, appearance and taste, and 65% initially reported that their children preferred the taste of the glucose solution. However, after a 30-minute trial, only 58% of children still preferred the glucose solution. In a country where diarrhoeal disease is a leading cause of child death and guardians are the primary health care providers, the acceptability of an ORS is critical to the morbidity and mortality of Papua New Guinea's children. Killing an estimated 2.9 million children annually, diarrheal disease is the second leading cause of child mortality worldwide. Diarrheal disease is also the second leading cause of child mortality in Papua New Guinea (PNG), killing an average 193 inpatient children per year over the period 1984-90. However, despite the high level of diarrhea-related mortality and the proven efficacy of oral rehydration therapy (ORT) in managing diarrhea-related dehydration, standardized ORT has been underutilized in PNG. The current glucose-based oral rehydration solution (ORS) does not reduce the frequency or volume of a child's diarrhea, the most immediate concern of caregivers during episodes of illness. Cereal-based ORS, made from cereals which are commonly available as food staples in most countries, better address the short-term concerns of caregivers while offering a superior nutritional profile. A sample of guardians of children brought to the Port Moresby General Hospital's Children's Outpatient Department complaining of child diarrhea were asked about their preferences on glucose-based versus rice-based ORS in order to determine the acceptability of a rice-based ORS. More than 60% of the 93 guardians interviewed preferred the glucose-based solution for its mixability, appearance, and taste. 65% initially reported that their children preferred the taste of the glucose solution. However, after a 30-minute trial, only 58% of children still preferred the glucose solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Age estimation from facial images is increasingly receiving attention to solve age-based access control, age-adaptive targeted marketing, amongst other applications. Since even humans can be induced in error due to the complex biological processes involved, finding a robust method remains a research challenge today. In this paper, we propose a new framework for the integration of Active Appearance Models (AAM), Local Binary Patterns (LBP), Gabor wavelets (GW) and Local Phase Quantization (LPQ) in order to obtain a highly discriminative feature representation which is able to model shape, appearance, wrinkles and skin spots. In addition, this paper proposes a novel flexible hierarchical age estimation approach consisting of a multi-class Support Vector Machine (SVM) to classify a subject into an age group followed by a Support Vector Regression (SVR) to estimate a specific age. The errors that may happen in the classification step, caused by the hard boundaries between age classes, are compensated in the specific age estimation by a flexible overlapping of the age ranges. The performance of the proposed approach was evaluated on FG-NET Aging and MORPH Album 2 datasets and a mean absolute error (MAE) of 4.50 and 5.86 years was achieved respectively. The robustness of the proposed approach was also evaluated on a merge of both datasets and a MAE of 5.20 years was achieved. Furthermore, we have also compared the age estimation made by humans with the proposed approach and it has shown that the machine outperforms humans. The proposed approach is competitive with current state-of-the-art and it provides an additional robustness to blur, lighting and expression variance brought about by the local phase features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increased interest on the use of Unmanned Aerial Vehicles (UAVs) for wildlife and feral animal monitoring around the world. This paper describes a novel system which uses a predictive dynamic application that places the UAV ahead of a user, with a low cost thermal camera, a small onboard computer that identifies heat signatures of a target animal from a predetermined altitude and transmits that target’s GPS coordinates. A map is generated and various data sets and graphs are displayed using a GUI designed for easy use. The paper describes the hardware and software architecture and the probabilistic model for downward facing camera for the detection of an animal. Behavioral dynamics of target movement for the design of a Kalman filter and Markov model based prediction algorithm are used to place the UAV ahead of the user. Geometrical concepts and Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of the user, thus delivering a new way point for autonomous navigation. Results show that the system is capable of autonomously locating animals from a predetermined height and generate a map showing the location of the animals ahead of the user.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite its rising success, interactive TV (iTV) has found very little attention in the field of HCI. Therefore, the aim of this paper is to investigate the usability of iTV services. It presents the results of a usability test and discusses the implications for further developments. The results show, that prior knowledge of Internet and mobile phones supports the usability of iTV services regarding navigation and text input, while the lack of it leads to great difficulties. Difficult tasks, such as writing a text message, had a success rate of only 20%, while guided tours proofed to be more usable with a success rate of 70%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.