188 resultados para Airport buildings
Resumo:
Over the past 30 years the nature of airport precincts has changed significantly from purely aviation services to a full range of retail, commercial, industrial and other non aviation uses. Most major airports in Australia are owned and operated by the private sector but are subject to long term head leases to the Federal Government, with subsequent sub leases in place to users of the land. The lease term available for both aviation and non aviation tenants is subject to the head lease term and in a number of Australian airport locations, these head leases are now two-thirds through their initial 50 year lease term and this is raising a number of issues from a valuation and ongoing development perspective. . For our airport precincts to continue to offer levels of infrastructure and services that are comparable or better than many commercial centres in the same location, policy makers need to understand the impact the uncertainty that exists when the current lease term is nearing expiration, especially in relation to the renewed lease term and rental payments. This paper reviews the changes in airport precinct ownership, management and development in Australia and highlights the valuation and rental assessment issues that are currently facing this property sector.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
An evolution in the use of digital modelling has occurred in the Queensland Department of Public Works Division of Project Services over the last 20 years from: the initial implementation of computer aided design and documentation (CADD); to experimentation with building information modelling (BIM); to embedding integrated practice (IP); to current steps towards integrated project delivery (IPD) including the active involvement of consultants and contractors in the design/delivery process. This case study is one of three undertaken through the Australian Sustainable Built Environment National Research Centre investigating past R&D investment. The intent of these cases is to inform the development of policy guidelines for future investment in the construction industry in Australia. This research is informing the activities of CIB Task Group 85 R&D Investment and Impact. The uptake of digital modelling by Project Services has been approached through an incremental learning approach. This has been driven by a strong and clear vision with a focus on developing more efficient delivery mechanisms through the use of new technology coupled with process change. Findings reveal an organisational focus on several areas including: (i) strategic decision making including the empowerment of innovation leaders and champions; (ii) the acquisition and exploitation of knowledge; (iii) product and process development (with a focus on efficiency and productivity); (iv) organisational learning; (v) maximising the use of technology; and (vi) supply chain integration. Key elements of this approach include pilot projects, researcher engagement, industry partnerships and leadership.
Resumo:
Video presented as part of ACIS 2009 conference in Melbourne Australia. This movie is a demonstration of the use of 3D Virtual Environments to visualise 3D BPMN Process Models, and in particular, to highlight any issues with the process model that are spatial in nature. This work is part of a paper accepted for the Asia-Pacific Conference on Conceptual Modelling (APCCM 2010) to be held in Brisbane - http://2010.apccm.org/
Resumo:
Australian airports have emerged as important urban activity centres over the past decade as a result of privatisation. A range of reciprocal airport and regional impacts now pose considerable challenges for both airport operation and the surrounding urban and regional environment. The airport can no longer be managed solely as a specialised transport entity in isolation from the metropolis that it serves. In 2007 a multidisciplinary Australian Research Council Linkage Project (LP 0775225) was funded to investigate the changing role of airports in Australia. This thesis is but one component of this collaborative research effort. Here the issues surrounding the policy and practice of airport and regional land use planning are explored, analysed and detailed. This research, for the first time, assembles a distinct progression of the wider social, economic, technological and environmental roles of the airport within the Australian airport literature from 1914 – 2011. It recognises that while the list of airport and regional impacts has grown through time, treatment within practice and the literature has largely remained highly specialised and contained within disciplinary paradigms. The first publication of the thesis (Chapter 2) acknowledges that the changing role of airports demands the establishment of new models of airport planning and development. It argues that practice and research requires a better understanding of the reciprocal impacts of airports and their urban catchments. The second publication (Chapter 3) highlights that there is ad hoc examination and media attention of high profile airport and regional conflict, but little empirical analysis or understanding of the extent to which all privatised Australian airports are intending to develop. The conceptual and methodological significance of this research is the development of a national land use classification system for on-airport development. This paper establishes the extent of on-airport development in Australia, providing insight into the changing land use and economic roles of privatised airports. The third publication (Chapter 4) details new and significant interdependencies for airport and regional development in consideration of the progression of airports as activity centres. Here the model of an ‘airport metropolis’ is offered as an organising device and theoretical contribution for comprehending the complexity and planning of airport and regional development. It delivers a conceptual framework for both research and policy, which acknowledges the reciprocal impacts of economic development, land use, infrastructure and governance ‘interfaces’. In a timely and significant concurrence with this research the Australian Government announced and delivered a National Aviation Policy Review (2008 – 2009). As such the fourth publication (Chapter 5) focuses on the airport and urban planning aspects of the review. This paper also highlights the overall policy intention of facilitating broader airport and regional collaborative processes. This communicative turn in airport policy is significant in light of the communicative theoretical framework of the thesis. The fifth paper of the thesis (Chapter 6) examines three Australian case studies (Brisbane, Adelaide and Canberra) to detail the context of airport and regional land use planning and to apply the airport metropolis model as a framework for research. Through the use of Land Use Forums, over 120 airport and regional stakeholders are brought together to detail their perspectives and interactions with airport and regional land use planning. An inductive thematic analysis of the results identifies three significant themes which contribute to the fragmentation of airport and regional and land use planning: 1) inadequate coordination and disjointed decision-making; 2) current legislative and policy frameworks; and 3) competing stakeholder priorities and interests. Building on this new knowledge, Chapter 7 details the perceptions of airport and local, state and territory government stakeholders to land use relationships, processes and outcomes. A series of semi-structured interviews are undertaken in each of the case studies to inform this research. The potential implications for ongoing communicative practice are discussed in conclusion. The following thesis represents an incremental and cumulative research process which delivers new knowledge for the practical understanding and research interpretation of airport and regional land use planning practice and policy. It has developed and applied a robust conceptual framework which delivers significant direction for all stakeholders to better comprehend the relevance of airports in the urban character and design of our cities.
Resumo:
Land use planning within and surrounding privatised Australian capital city airports is a fragmented process as a result of: current legislative and policy frameworks; competing stakeholder priorities and interests; and inadequate coordination and disjointed decision-making. Three Australian case studies are examined to detail the context of airport and regional land use planning. Stakeholder Land Use Forums within each case study have served to inform the procedural dynamics and relationships between airport and regional land use decision-making. This article identifies significant themes and stakeholder perspectives regarding on-airport development and broader urban land use policy and planning. First, it outlines the concept of the “airport city” and examines the model of airport and regional “interfaces.” Then, it details the policy context that differentiates on-airport land use planning from planning within the surrounding region. The article then analyses the results of the Land Use Forums identifying key themes within the shared and reciprocal interfaces of governance, environment, economic development and infrastructure. The article concludes by detailing the implications of this research to broader urban planning and highlights the core issues contributing to the fragmentation of airport and regional land use planning policy.
Resumo:
Energy efficiency of buildings is attracting significant attention from the research community as the world is moving towards sustainable buildings design. Energy efficient approaches are measures or ways to improve the energy performance and energy efficiency of buildings. This study surveyed various energy-efficient approaches for commercial building and identifies Envelope Thermal Transfer Value (ETTV) and Green applications (Living wall, Green facade and Green roof) as most important and effective methods. An in-depth investigation was carried out on these energy-efficient approaches. It has been found that no ETTV model has been developed for sub-tropical climate of Australia. Moreover, existing ETTV equations developed for other countries do not take roof heat gain into consideration. Furthermore, the relationship of ETTV and different Green applications have not been investigated extensively in any literature, and the energy performance of commercial buildings in the presence of Living wall, Green facade and Green roof has not been investigated in the sub-tropical climate of Australia. The study has been conducted in two phases. First, the study develops the new formulation, coefficient and bench mark value of ETTV in the presence of external shading devices. In the new formulation, roof heat gain has been included in the integrated heat gain model made of ETTV. In the 2nd stage, the study presents the relationship of thermal and energy performance of (a) Living wall and ETTV (b) Green facade and ETTV (c) Combination of Living wall, Green facade and ETTV (d) Combination of Living wall, Green Roof and ETTV in new formulations. Finally, the study demonstrates the amount of energy that can be saved annually from different combinations of Green applications, i.e., Living wall, Green facade; combination of Living wall and Green facade; combination of Living wall and Green roof. The estimations are supported by experimental values obtained from extensive experiments of Living walls and Green roofs.
Resumo:
This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 µm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6 to 3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building’s HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.
Resumo:
Since the first oil crisis in 1974, economic reasons placed energy saving among the top priorities in most industrialised countries. In the decades that followed, another, equally strong driver for energy saving emerged: climate change caused by anthropogenic emissions, a large fraction of which result from energy generation. Intrinsically linked to energy consumption and its related emissions is another problem: indoor air quality. City dwellers in industrialised nations spend over 90% of their time indoors and exposure to indoor pollutants contributes to ~2.6% of global burden of disease and nearly 2 million premature deaths per year1. Changing climate conditions, together with human expectations of comfortable thermal conditions, elevates building energy requirements for heating, cooling, lighting and the use of other electrical equipment. We believe that these changes elicit a need to understand the nexus between energy consumption and its consequent impact on indoor air quality in urban buildings. In our opinion the key questions are how energy consumption is distributed between different building services, and how the resulting pollution affects indoor air quality. The energy-pollution nexus has clearly been identified in qualitative terms; however the quantification of such a nexus to derive emissions or concentrations per unit energy consumption is still weak, inconclusive and requires forward thinking. Of course, various aspects of energy consumption and indoor air quality have been studied in detail separately, but in-depth, integrated studies of the energy-pollution nexus are hard to come by. We argue that such studies could be instrumental in providing sustainable solutions to maintain the trade-off between the energy efficiency of buildings and acceptable levels of air pollution for healthy living.
Resumo:
Climate change is expected to increase earth’s temperatures and consequently result in more frequent extreme weather events such as cyclones, storms, droughts and floods and rising global sea levels. This phenomenon will affect all assets. This paper discusses the impact of climate change and its consequences on public buildings. Public building management encompasses the building life cycle from planning, procurement, operation, repair and maintenance and building disposal. This paper recommends climate change adaptation strategies to be integrated into public building management. The roles and responsibilities of asset managers and users are discussed within the framework of planning and implementation of public building management and the integration of climate change adaptation strategies. A key point is that climate change can induce premature obsolescence of public buildings and services, which will increase the maintenance and refurbishment costs. This in turn will affect the life cycle cost of the building. Furthermore, a business continuity plan is essential for public building management in the context of disasters. The paper also highlights the significant role that the occupants of public buildings can play in the development and implementation of climate change adaptation strategies.
Resumo:
This thesis examines the use of network governance in US airport transportation planning activities involving taxicab services for airport patrons. The research provides US airports with new insights whereby they can successfully engage with both transportation regulatory agencies and taxicab service providers in developing mutually agreeable policies that foster the development of supply-side taxicab service improvements. A mix of quantitative and qualitative research methods is used to unearth how US airports interact with these actors, and to identify attitudes held by airport staff in their engagements involving airport taxicab planning matters. The research may ultimately lead to the achievement of sustainable increases in the air passenger ground transportation modal share at US airports, resulting in both desirable long-term operational and environmental benefits for airport management, those involved with the provision of airport taxicab services, and the traveling public.
Resumo:
Flood flows in inundated urban environment constitute a natural hazard. During the 12- 13 January 2011 flood of the Brisbane River, detailed water elevation, velocity and suspended sediment data were recorded in an inundated street at the peak of the flood. The field observations highlighted a number of unusual flow interactions with the urban surroundings. These included some slow fluctuations in water elevations and velocity with distinctive periods between 50 and 100 s caused by some local topographic effect (choking), superposed with some fast turbulent fluctuations. The suspended sediment data highlighted some significant suspended sediment loads in the inundated zone.
Resumo:
In recent times, fire has become a major disaster in buildings due to the increase in fire loads, as a result of modern furniture and light weight construction. This has caused problems for safe evacuation and rescue activities, and in some instances lead to the collapse of buildings (Lewis, 2008 and Nyman, 2002). Recent research has shown that the actual fire resistance of building elements exposed to building fires can be less than their specified fire resistance rating (Lennon and Moore, 2003, Jones, 2002, Nyman, 2002 and Abecassis-Empis et al. 2008). Conventionally the fire rating of building elements is determined using fire tests based on the standard fire time-temperature curve given in ISO 834. This ISO 834 curve was developed in the early 1900s, where wood was the basic fuel source. In reality, modern buildings make use of thermoplastic materials, synthetic foams and fabrics. These materials are high in calorific values and increase both the speed of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Hence it suggests the need to use realistic fire time-temperature curves in tests. Real building fire temperature profiles depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials. Fuel load is selected based on a review and suitable realistic fire time-temperature curves were developed. Fire tests were then performed for plasterboard lined light gauge steel framed walls for the developed realistic fire curves. This paper presents the details of the development of suitable realistic building fire curves, and the fire tests using them. It describes the fire performance of tested walls in comparison to the standard fire tests and highlights the differences between them. This research has shown the need to use realistic fire exposures in assessing the fire resistance rating of building elements.
Resumo:
Passengers navigating through airports can experience confusion or become lost, resulting in dissatisfaction, missed flights and flight delays. Passengers moving through airports are required to make many navigation decisions, for example to find the correct check-in desk or find the correct boarding gate. Prior experience of using the airports is likely to enable intuitive navigation, however limited research on this topic currently exists. In this paper we investigate passenger navigation by observing 30 participants at one international airport as they moved from check-in to a departure gate. The results indicate that passengers do spend time navigating intuitively through the airport, and that there is a positive correlation between intuitive navigation and airport familiarity. It was also found that participants with lower airport familiarity spend a greater percentage of overall navigation time searching and assessing/acquiring information than high familiarity participants. These findings provide evidence that passengers with higher airport familiarity have a greater understanding of the process, have a better understanding of what information to look for and use this familiarity to navigate intuitively. Findings from this research will have design implications for both current, and future airport terminals and other large spaces that people navigate through.
Resumo:
Passenger flow studies in airport terminals have shown consistent statistical relationships between airport spatial layout and pedestrian movement, facilitating prediction of movement from terminal designs. However, these studies are done at an aggregate level and do not incorporate how individual passengers make decisions at a microscopic level. Therefore, they do not explain the formation of complex movement flows. In addition, existing models mostly focus on standard airport processing procedures such as immigration and security, but seldom consider discretionary activities of passengers, and thus are not able to truly describe the full range of passenger flows within airport terminals. As the route-choice decision-making of passengers involves many uncertain factors within the airport terminals, the mechanisms to fulfill the capacity of managing the route-choice have proven difficult to acquire and quantify. Could the study of cognitive factors of passengers (i.e. human mental preferences of deciding which on-airport facility to use) be useful to tackle these issues? Assuming the movement in virtual simulated environments can be analogous to movement in real environments, passenger behaviour dynamics can be similar to those generated in virtual experiments. Three levels of dynamics have been devised for motion control: the localised field, tactical level, and strategic level. A localised field refers to basic motion capabilities, such as walking speed, direction and avoidance of obstacles. The other two fields represent cognitive route-choice decision-making. This research views passenger flow problems via a "bottom-up approach", regarding individual passengers as independent intelligent agents who can behave autonomously and are able to interact with others and the ambient environment. In this regard, passenger flow formation becomes an emergent phenomenon of large numbers of passengers interacting with others. In the thesis, first, the passenger flow in airport terminals was investigated. Discretionary activities of passengers were integrated with standard processing procedures in the research. The localised field for passenger motion dynamics was constructed by a devised force-based model. Next, advanced traits of passengers (such as their desire to shop, their comfort with technology and their willingness to ask for assistance) were formulated to facilitate tactical route-choice decision-making. The traits consist of quantified measures of mental preferences of passengers when they travel through airport terminals. Each category of the traits indicates a decision which passengers may take. They were inferred through a Bayesian network model by analysing the probabilities based on currently available data. Route-choice decision-making was finalised by calculating corresponding utility results based on those probabilities observed. Three sorts of simulation outcomes were generated: namely, queuing length before checkpoints, average dwell time of passengers at service facilities, and instantaneous space utilisation. Queuing length reflects the number of passengers who are in a queue. Long queues no doubt cause significant delay in processing procedures. The dwell time of each passenger agent at the service facilities were recorded. The overall dwell time of passenger agents at typical facility areas were analysed so as to demonstrate portions of utilisation in the temporal aspect. For the spatial aspect, the number of passenger agents who were dwelling within specific terminal areas can be used to estimate service rates. All outcomes demonstrated specific results by typical simulated passenger flows. They directly reflect terminal capacity. The simulation results strongly suggest that integrating discretionary activities of passengers makes the passenger flows more intuitive, observing probabilities of mental preferences by inferring advanced traits make up an approach capable of carrying out tactical route-choice decision-making. On the whole, the research studied passenger flows in airport terminals by an agent-based model, which investigated individual characteristics of passengers and their impact on psychological route-choice decisions of passengers. Finally, intuitive passenger flows in airport terminals were able to be realised in simulation.