112 resultados para Aerospace navigation
Resumo:
A number of hurdles must be overcome in order to integrate unmanned aircraft into civilian airspace for routine operations. The ability of the aircraft to land safely in an emergency is essential to reduce the risk to people, infrastructure and aircraft. To date, few field-demonstrated systems have been presented that show online re-planning and repeatability from failure to touchdown. This paper presents the development of the Guidance, Navigation and Control (GNC) component of an Automated Emergency Landing System (AELS) intended to address this gap, suited to a variety of fixed-wing aircraft. Field-tested on both a fixed-wing UAV and Cessna 172R during repeated emergency landing experiments, a trochoid-based path planner computes feasible trajectories and a simplified control system executes the required manoeuvres to guide the aircraft towards touchdown on a predefined landing site. This is achieved in zero-thrust conditions with engine forced to idle to simulate failure. During an autonomous landing, the controller uses airspeed, inertial and GPS data to track motion and maintains essential flight parameters to guarantee flyability, while the planner monitors glide ratio and re-plans to ensure approach at correct altitude. Simulations show reliability of the system in a variety of wind conditions and its repeated ability to land within the boundary of a predefined landing site. Results from field-tests for the two aircraft demonstrate the effectiveness of the proposed GNC system in live operation. Results show that the system is capable of guiding the aircraft to close proximity of a predefined keyhole in nearly 100% of cases.
Resumo:
Game strategies have been developed in past decades and used in the field of economics, engineering, computer science and biology due to their efficiency in solving design optimisation problems. In addition, research on Multi-Objective (MO) and Multidisciplinary Design Optimisation (MDO) has focused on developing robust and efficient optimisation method to produce quality solutions with less computational time. In this paper, a new optimisation method Hybrid Game Strategy for MO problems is introduced and compared to CMA-ES based optimisation approach. Numerical results obtained from both optimisation methods are compared in terms of computational expense and model quality. The benefits of using Game-strategies are demonstrated.
Resumo:
Acoustic recordings play an increasingly important role in monitoring terrestrial and aquatic environments. However, rapid advances in technology make it possible to accumulate thousands of hours of recordings, more than ecologists can ever listen to. Our approach to this big-data challenge is to visualize the content of long-duration audio recordings on multiple scales, from minutes, hours, days to years. The visualization should facilitate navigation and yield ecologically meaningful information prior to listening to the audio. To construct images, we calculate acoustic indices, statistics that describe the distribution of acoustic energy and reflect content of ecological interest. We combine various indices to produce false-color spectrogram images that reveal acoustic content and facilitate navigation. The technical challenge we investigate in this work is how to navigate recordings that are days or even months in duration. We introduce a method of zooming through multiple temporal scales, analogous to Google Maps. However, the “landscape” to be navigated is not geographical and not therefore intrinsically visual, but rather a graphical representation of the underlying audio. We describe solutions to navigating spectrograms that range over three orders of magnitude of temporal scale. We make three sets of observations: 1. We determine that at least ten intermediate scale steps are required to zoom over three orders of magnitude of temporal scale; 2. We determine that three different visual representations are required to cover the range of temporal scales; 3. We present a solution to the problem of maintaining visual continuity when stepping between different visual representations. Finally, we demonstrate the utility of the approach with four case studies.
Resumo:
The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.
Resumo:
There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.
Resumo:
The BeiDou system is the first global navigation satellite system in which all satellites transmit triple-frequency signals that can provide the positioning, navigation, and timing independently. A benefit of triple-frequency signals is that more useful combinations can be formed, including some extrawide-lane combinations whose ambiguities can generally be instantaneously fixed without distance restriction, although the narrow-lane ambiguity resolution (NL AR) still depends on the interreceiver distance or requires a long time to achieve. In this paper, we synthetically study decimeter and centimeter kinematic positioning using BeiDou triple-frequency signals. It starts with AR of two extrawide-lane signals based on the ionosphere-free or ionosphere-reduced geometry-free model. For decimeter positioning, one can immediately use two ambiguity-fixed extrawide-lane observations without pursuing NL AR. To achieve higher accuracy, NL AR is the necessary next step. Despite the fact that long-baseline NL AR is still challenging, some NL ambiguities can indeed be fixed with high reliability. Partial AR for NL signals is acceptable, because as long as some ambiguities for NL signals are fixed, positioning accuracy will be certainly improved.With accumulation of observations, more and more NL ambiguities are fixed and the positioning accuracy continues to improve. An efficient Kalman-filtering system is established to implement the whole process. The formulated system is flexible, since the additional constraints can be easily applied to enhance the model's strength. Numerical results from a set of real triple-frequency BeiDou data on a 50 km baseline show that decimeter positioning is achievable instantaneously.With only five data epochs, 84% of NL ambiguities can be fixed so that the real-time kinematic accuracies are 4.5, 2.5, and 16 cm for north, east, and height components (respectively), while with 10 data epochs more than 90% of NL ambiguities are fixed, and the rea- -time kinematic solutions are improved to centimeter level for all three coordinate components.
Resumo:
This thesis examined passengers' intuitive navigation in airports. It aims to ensure that passengers can navigate fast and efficiently through these complex environments. Field research was conducted at two Australian international airports. Participants wore eye-tracking glasses while finding their way through the terminal. Insight was gained into the intuitive use of navigation elements in the airport environment. With a detailed understanding of how passengers' navigate, the findings from this research can be used to improve airport design and planning. This will assist passengers who don't regularly fly as well as those who are frequent flyers.