240 resultados para volume optimisation
Resumo:
OBJECTIVE: Childhood-onset type 1 diabetes is associated with neurocognitive deficits, but there is limited evidence to date regarding associated neuroanatomical brain changes and their relationship to illness variables such as age at disease onset. This report examines age-related changes in volume and T2 relaxation time (a fundamental parameter of magnetic resonance imaging that reflects tissue health) across the whole brain. RESEARCH DESIGN AND METHODS: Type 1 diabetes, N = 79 (mean age 20.32 ± 4.24 years), and healthy control participants, N = 50 (mean age 20.53 ± 3.60 years). There were no substantial group differences on socioeconomic status, sex ratio, or intelligence quotient. RESULTS: Regression analyses revealed a negative correlation between age and brain changes, with decreasing gray matter volume and T2 relaxation time with age in multiple brain regions in the type 1 diabetes group. In comparison, the age-related decline in the control group was small. Examination of the interaction of group and age confirmed a group difference (type 1 diabetes vs. control) in the relationship between age and brain volume/T2 relaxation time. CONCLUSIONS: We demonstrated an interaction between age and group in predicting brain volumes and T2 relaxation time such that there was a decline in these outcomes in type 1 diabetic participants that was much less evident in control subjects. Findings suggest the neurodevelopmental pathways of youth with type 1 diabetes have diverged from those of their healthy peers by late adolescence and early adulthood but the explanation for this phenomenon remains to be clarified.
Resumo:
Subtropical south-east Queensland’s expanding population is expected to lead to a demand for an additional 754,000 dwellings by 2031. A legacy of poor housing design, minimal building regulations, an absence of building performance evaluation and various social and market factors has lead to a high and growing penetration of, and reliance on, air conditioners to provide comfort in this relatively benign climate. This reliance impacts on policy goals to adapt to and mitigate against global warming, electricity infrastructure investment and household resilience. Based on the concept of bioclimatic design, this field study scrutinizes eight non-air conditioned homes to develop a deeper understanding of the role of contemporary passive solar architecture in the delivery of thermally comfortable and resilient homes in the subtropics. These homes were found to provide inhabitants with an acceptable level of thermal comfort (18-28oC) for 77 – 97% of the year. Family expectations and experiences of comfort, and the various design strategies utilized were compared against the measured performance outcomes. This comparison revealed issues that limited quantification and implementation of design intent and highlighted factors that constrained system optimisation.
Resumo:
The paper investigates a detailed Active Shock Control Bump Design Optimisation on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 to reduce cruise drag at transonic flow conditions using Evolutionary Algorithms (EAs) coupled to a robust design approach. For the uncertainty design parameters, the positions of boundary layer transition (xtr) and the coefficient of lift (Cl) are considered (250 stochastic samples in total). In this paper, two robust design methods are considered; the first approach uses a standard robust design method, which evaluates one design model at 250 stochastic conditions for uncertainty. The second approach is the combination of a standard robust design method and the concept of hierarchical (multi-population) sampling (250, 50, 15) for uncertainty. Numerical results show that the evolutionary optimization method coupled to uncertainty design techniques produces useful and reliable Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction. In addition,it also shows the benefit of using hierarchical robust method for detailed uncertainty design optimization.
Resumo:
Volume measurements are useful in many branches of science and medicine. They are usually accomplished by acquiring a sequence of cross sectional images through the object using an appropriate scanning modality, for example x-ray computed tomography (CT), magnetic resonance (MR) or ultrasound (US). In the cases of CT and MR, a dividing cubes algorithm can be used to describe the surface as a triangle mesh. However, such algorithms are not suitable for US data, especially when the image sequence is multiplanar (as it usually is). This problem may be overcome by manually tracing regions of interest (ROIs) on the registered multiplanar images and connecting the points into a triangular mesh. In this paper we describe and evaluate a new discreet form of Gauss’ theorem which enables the calculation of the volume of any enclosed surface described by a triangular mesh. The volume is calculated by summing the vector product of the centroid, area and normal of each surface triangle. The algorithm was tested on computer-generated objects, US-scanned balloons, livers and kidneys and CT-scanned clay rocks. The results, expressed as the mean percentage difference ± one standard deviation were 1.2 ± 2.3, 5.5 ± 4.7, 3.0 ± 3.2 and −1.2 ± 3.2% for balloons, livers, kidneys and rocks respectively. The results compare favourably with other volume estimation methods such as planimetry and tetrahedral decomposition.
Resumo:
A system is described for calculating volume from a sequence of multiplanar 2D ultrasound images. Ultrasound images are captured using a video digitising card (Hauppauge Win/TV card) installed in a personal computer, and regions of interest transformed into 3D space using position and orientation data obtained from an electromagnetic device (Polbemus, Fastrak). The accuracy of the system was assessed by scanning 10 water filled balloons (13-141 ml), 10 kidneys (147 200 ml) and 16 fetal livers (8 37 ml) in water using an Acuson 128XP/10 (5 MHz curvilinear probe). Volume was calculated using the ellipsoid, planimetry, tetrahedral and ray tracing methods and compared with the actual volume measured by weighing (balloons) and water displacement (kidneys and livers). The mean percentage error for the ray tracing method was 0.9 ± 2.4%, 2.7 ± 2.3%, 6.6 ± 5.4% for balloons, kidneys and livers, respectively. So far the system has been used clinically to scan fetal livers and lungs, neonate brain ventricles and adult prostate glands.
Resumo:
A new system is described for estimating volume from a series of multiplanar 2D ultrasound images. Ultrasound images are captured using a personal computer video digitizing card and an electromagnetic localization system is used to record the pose of the ultrasound images. The accuracy of the system was assessed by scanning four groups of ten cadaveric kidneys on four different ultrasound machines. Scan image planes were oriented either radially, in parallel or slanted at 30 C to the vertical. The cross-sectional images of the kidneys were traced using a mouse and the outline points transformed to 3D space using the Fastrak position and orientation data. Points on adjacent region of interest outlines were connected to form a triangle mesh and the volume of the kidneys estimated using the ellipsoid, planimetry, tetrahedral and ray tracing methods. There was little difference between the results for the different scan techniques or volume estimation algorithms, although, perhaps as expected, the ellipsoid results were the least precise. For radial scanning and ray tracing, the mean and standard deviation of the percentage errors for the four different machines were as follows: Hitachi EUB-240, −3.0 ± 2.7%; Tosbee RM3, −0.1 ± 2.3%; Hitachi EUB-415, 0.2 ± 2.3%; Acuson, 2.7 ± 2.3%.
Resumo:
Sixteen formalin-fixed foetal livers were scanned in vitro using a new system for estimating volume from a sequence of multiplanar 2D ultrasound images. Three different scan techniques were used (radial, parallel and slanted) and four volume estimation algorithms (ellipsoid, planimetry, tetrahedral and ray tracing). Actual liver volumes were measured by water displacement. Twelve of the sixteen livers also received x-ray computed tomography (CT) and magnetic resonance (MR) scans and the volumes were calculated using voxel counting and planimetry. The percentage accuracy (mean ± SD) was 5.3 ± 4.7%, −3.1 ± 9.6% and −0.03 ± 9.7% for ultrasound (radial scans, ray volumes), MR and CT (voxel counting) respectively. The new system may be useful for accurately estimating foetal liver volume in utero.
Resumo:
In this video, words describing socially awkward conversations float around an animated cloud of gas. A cosmic stock music track accompanies the words. This work examines processes of signification. It emphasizes multiplicity and disconnection as fundamental and generative operations in making meaning. By playing with the simultaneity of internal monologues and external conversations, it draws attention to the seams, gaps and slippages that occur in signifying acts.
Resumo:
Colour is one of the most important parameters in sugar quality and its presence in raw sugar plays a key role in the marketing strategy of sugar industries worldwide. This study investigated the degradation of a mixture of colour precursors using the Fenton oxidation process. These colour precursors are caffeic acid, p–coumaric acid and ferulic acid, which are present in cane juice. Results showed that with a Fe(II) to H2O2 molar ratio of 1:15 in an aqueous system at 25 °C, 77% of the total phenolic acid content was removed at pH 4.72. However, in a synthetic juice solution which contained 13 mass % sucrose (35 °C, pH 5.4), only 60% of the total phenolic acid content was removed.
Resumo:
Nowadays, Workflow Management Systems (WfMSs) and, more generally, Process Management Systems (PMPs) are process-aware Information Systems (PAISs), are widely used to support many human organizational activities, ranging from well-understood, relatively stable and structures processes (supply chain management, postal delivery tracking, etc.) to processes that are more complicated, less structured and may exhibit a high degree of variation (health-care, emergency management, etc.). Every aspect of a business process involves a certain amount of knowledge which may be complex depending on the domain of interest. The adequate representation of this knowledge is determined by the modeling language used. Some processes behave in a way that is well understood, predictable and repeatable: the tasks are clearly delineated and the control flow is straightforward. Recent discussions, however, illustrate the increasing demand for solutions for knowledge-intensive processes, where these characteristics are less applicable. The actors involved in the conduct of a knowledge-intensive process have to deal with a high degree of uncertainty. Tasks may be hard to perform and the order in which they need to be performed may be highly variable. Modeling knowledge-intensive processes can be complex as it may be hard to capture at design-time what knowledge is available at run-time. In realistic environments, for example, actors lack important knowledge at execution time or this knowledge can become obsolete as the process progresses. Even if each actor (at some point) has perfect knowledge of the world, it may not be certain of its beliefs at later points in time, since tasks by other actors may change the world without those changes being perceived. Typically, a knowledge-intensive process cannot be adequately modeled by classical, state of the art process/workflow modeling approaches. In some respect there is a lack of maturity when it comes to capturing the semantic aspects involved, both in terms of reasoning about them. The main focus of the 1st International Workshop on Knowledge-intensive Business processes (KiBP 2012) was investigating how techniques from different fields, such as Artificial Intelligence (AI), Knowledge Representation (KR), Business Process Management (BPM), Service Oriented Computing (SOC), etc., can be combined with the aim of improving the modeling and the enactment phases of a knowledge-intensive process. The 1st International Workshop on Knowledge-intensive Business process (KiBP 2012) was held as part of the program of the 2012 Knowledge Representation & Reasoning International Conference (KR 2012) in Rome, Italy, in June 2012. The workshop was hosted by the Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti of Sapienza Universita di Roma, with financial support of the University, through grant 2010-C26A107CN9 TESTMED, and the EU Commission through the projects FP7-25888 Greener Buildings and FP7-257899 Smart Vortex. This volume contains the 5 papers accepted and presented at the workshop. Each paper was reviewed by three members of the internationally renowned Program Committee. In addition, a further paper was invted for inclusion in the workshop proceedings and for presentation at the workshop. There were two keynote talks, one by Marlon Dumas (Institute of Computer Science, University of Tartu, Estonia) on "Integrated Data and Process Management: Finally?" and the other by Yves Lesperance (Department of Computer Science and Engineering, York University, Canada) on "A Logic-Based Approach to Business Processes Customization" completed the scientific program. We would like to thank all the Program Committee members for the valuable work in selecting the papers, Andrea Marrella for his valuable work as publication and publicity chair of the workshop, and Carola Aiello and the consulting agency Consulta Umbria for the organization of this successful event.
A finite volume method for solving the two-sided time-space fractional advection-dispersion equation
Resumo:
The field of fractional differential equations provides a means for modelling transport processes within complex media which are governed by anomalous transport. Indeed, the application to anomalous transport has been a significant driving force behind the rapid growth and expansion of the literature in the field of fractional calculus. In this paper, we present a finite volume method to solve the time-space two-sided fractional advection dispersion equation on a one-dimensional domain. Such an equation allows modelling different flow regime impacts from either side. The finite volume formulation provides a natural way to handle fractional advection-dispersion equations written in conservative form. The novel spatial discretisation employs fractionally-shifted Gr¨unwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes, while the L1-algorithm is used to discretise the Caputo time fractional derivative. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.
Resumo:
Navigation through tessellated solids in GEANT4 can degrade computational performance, especially if the tessellated solid is large and is comprised of many facets. Redefining a tessellated solid as a mesh of tetrahedra is common in other computational techniques such as finite element analysis as computations need only consider local tetrahedrons rather than the tessellated solid as a whole. Here within we describe a technique that allows for automatic tetrahedral meshing of tessellated solids in GEANT4 and the subsequent loading of these meshes as assembly volumes; loading nested tessellated solids and tetrahedral meshes is also examined. As the technique makes the geometry suitable for automatic optimisation using smartvoxels, navigation through a simple tessellated volume has been found to be more than two orders of magnitude faster than that through the equivalent tessellated solid. Speed increases of more than two orders of magnitude were also observed for a more complex tessellated solid with voids and concavities. The technique was benchmarked for geometry load time, simulation run time and memory usage. Source code enabling the described functionality in GEANT4 has been made freely available on the Internet.
Resumo:
Traversability maps are a global spatial representation of the relative difficulty in driving through a local region. These maps support simple optimisation of robot paths and have been very popular in path planning techniques. Despite the popularity of these maps, the methods for generating global traversability maps have been limited to using a-priori information. This paper explores the construction of large scale traversability maps for a vehicle performing a repeated activity in a bounded working environment, such as a repeated delivery task.We evaluate the use of vehicle power consumption, longitudinal slip, lateral slip and vehicle orientation to classify the traversability and incorporate this into a map generated from sparse information.
Resumo:
In late 1993 the Federal Government required the Industry Commission to inquire into charitable organisations. We have previously raised issues about the scope and nature of the inquiry process. These issues are: - the appropriateness of the Commission to undertake the inquiry, - the limited time span given the breadth of the inquiry, - and the non-explicit disclosure of the intellectual framework and methodology to be employed in the inquiry.