96 resultados para thermooxidative degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project has determined angiogenic and anti-angiogenic factors in osteoarthritis cartilage. The work has expanded our knowledge and understanding of the importance of anti-angiogenic factors in maintaining cartilage homeostasis. This study also tested the concept of topical application of anti-angiogenic treatment strategy for osteoarthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of five illicit drug markers in wastewater was tested under different sewer conditions using laboratory-scale sewer reactors. Wastewater was spiked with deuterium labelled isotopes of cocaine, benzoyl ecgonine, methamphetamine, MDMA and 6-acetyl morphine to avoid interference from the native isotopes already present in the wastewater matrix. The sewer reactors were operated at 20 °C and pH 7.5, and wastewater was sampled at 0, 0.25, 0.5, 1, 2, 3, 6, 9 and 12 h to measure the transformation/degradation of these marker compounds. The results showed that while methamphetamine, MDMA and benzoyl ecgonine were stable in the sewer reactors, cocaine and 6-acetyl morphine degraded quickly. Their degradation rates are significantly higher than the values reportedly measured in wastewater alone (without biofilms). All the degradation processes followed first order kinetics. Benzoyl ecgonine and morphine were also formed from the degradation of cocaine and 6-acetyl morphine, respectively, with stable formation rates throughout the test. These findings suggest that, in sewage epidemiology, it is essential to have relevant information of the sewer system (i.e. type of sewer, hydraulic retention time) in order to accurately back-estimate the consumption of illicit drugs. More research is required to look into detailed sewer conditions (e.g. temperature, pH and ratio of biofilm area to wastewater volume among others) to identify their effects on the fate of illicit drug markers in sewer systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term stability of methylammonium lead triiodide (MAPbI3) perovskite in moist environments is a paramount challenge to realise the commercialization of perovskite solar cells. In an attempt to address this concern, we have carried out systematic first-principles studies on the MAPbI3 perovskite with a hydrophobic graphene layer interfaced as a water barrier. We find there is a charge transfer at the graphene/MAPbI3 interface and electrons can be excited from graphene into the perovskite surface, leading to well separated electron–hole pairs, i.e. reduced recombination. By studying the optical properties, we find the hybrid graphene/MAPbI3 nanocomposite displays enhanced light absorption compared with the pristine MAPbI3. Furthermore, from an ab initio molecular dynamics simulation, the graphene/MAPbI3 nanocomposite is confirmed to be able to resist the reaction with water molecules, highlighting a great advantage of this nanocomposite in promoting long-term photovoltaic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the use of fusion techniques and mathematical modelling to increase the robustness of iris recognition systems against iris image quality degradation, pupil size changes and partial occlusion. The proposed techniques improve recognition accuracy and enhance security. They can be further developed for better iris recognition in less constrained environments that do not require user cooperation. A framework to analyse the consistency of different regions of the iris is also developed. This can be applied to improve recognition systems using partial iris images, and cancelable biometric signatures or biometric based cryptography for privacy protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In open-cut strip mining, waste material is placed in-pit to minimise operational mine costs. Slope failures in these spoil piles pose a significant safety risk to personnel, along with a financial risk from loss of equipment and scheduling delays. It has been observed that most spoil pile failures occur when the pit has been previously filled with water and then subsequently dewatered. The failures are often initiated at the base of spoil piles where the material can undergo significant slaking (disintegration) over time due to overburden pressure and water saturation. It is important to understand how the mechanical properties of base spoil material are affected by slaking when designing safe spoil pile slope angles, heights, and dewatering rates. In this study, fresh spoil material collected from a coal mine in Brown Basin Coalfield of Queensland, Australia was subjected to high overburden pressure (0 – 900 kPa) under saturated condition and maintained over a period of time (0 – 6 months) allowing the material to slake. To create the above conditions, laboratory designed pressure chambers were used. Once a spoil sample was slaked under certain overburden pressure over a period of time, it was tested for classification, permeability, and strength properties. Results of this testing program suggested that the slaking of saturated coal mine spoil increase with overburden pressure and the time duration over which the overburden pressure was maintained. Further, it was observed that shear strength and permeability of spoil decreased with increase in spoil slaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A profluorescent nitroxide possessing an isoindoline nitroxide moiety linked to a perylene fluorophore was developed to monitor radical mediated degradation of melamine-formaldehyde crosslinked polyester coil coatings in an industry standard accelerated weathering tester. Trapping of polyester-derived radicals (most likely C-radicals) that are generated during polymer degradation leads to fluorescent closed-shell alkoxy amines, which was used to obtain time-dependent degradation profiles to assess the relative stability of different polyesters towards weathering. The nitroxide probe couples excellent thermal stability and satisfactory photostability with high sensitivity and enables detection of free radical damage in polyesters under conditions that mimic exposure to the environment on a time scale of hours rather than months or years required by other testing methods. There are indications that the profluorescent nitroxide undergoes partial photo-degradation in the absence of polymer-derived radicals. Unexpectedly, it was also found that UV-induced fragmentation of the NO–C bond in closed-shell alkoxy amines leads to regeneration of the profluorescent nitroxide and the respective C-radical. The maximum fluorescence intensity that could be achieved with a given probe concentration is therefore not only determined by the amount of polyester radicals formed during accelerated weathering, but also by the light-driven side reactions of the profluorescent nitroxide and the corresponding alkoxy amine radical trapping products. Studies to determine the optimum probe concentration in the polymer matrix revealed that aggregation and re-absorption effects lowered the fluorescence intensity at higher concentrations of the profluorescent nitroxide, but too low probe concentrations, where these effects would be avoided, were not sufficient to trap the amount of polyester radicals formed upon weathering. The optimized experimental conditions were used to assess the impact of temperature and UV irradiance on polymer degradation during accelerated weathering.