100 resultados para thermal analysis
Resumo:
This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation.
Resumo:
Methyl orange (MO) is a kind of anionic dye and widely used in industry. In this study, tricalcium aluminate hydrates (Ca-Al-LDHs) are used as an adsorbent to remove methyl orange (MO) from aqueous solutions. The resulting products were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), thermal analysis (TG-DTA) and scanning electron microscope (SEM). The XRD results indicated that the MO molecules were successfully intercalated into the tricalcium aluminate hydrates, with the basal spacing of Ca-Al-LDH expanding to 2.48 nm. The MIR spectrum for CaAl-MO-LDH shows obvious bands assigned to the N@N, N@H stretching vibrations and S@O, SO_ 3 group respectively, which are considered as marks to assess MO_ ion intercalation into the interlayers of LDH. The overall morphology of CaAl-MOLDH displayed a ‘‘honey-comb’’ like structure, with the adjacent layers expanded.
Resumo:
The mineral sturmanite is a hydrated calcium iron aluminium manganese sulphate tetrahydroxoborate hydroxide of formula Ca6(Fe, Al, Mn)2(SO4)2(B(OH)4)(OH)12•26H2O. We have studied the mineral sturmanite using a number of techniques, including SEM with EPMA and vibrational spectroscopy. Chemical analysis shows a homogeneous phase, composed by Ca, Fe, Mn, S, Al and Si. B is not determined in this EPMA technique. An intense Raman band at 990 cm−1 is assigned to the SO42− symmetric stretching mode. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1069 cm−1 which may be attributed to a carbonate symmetric stretching mode, indicating the presence of thaumasite. Infrared spectra display two bands at 1080 and 1107 cm−1 assigned to the SO42− antisymmetric stretching modes. The observation of multiple bands in this ν4 spectral region offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3622 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3479 cm−1 to water stretching bands. Infrared spectroscopy shows a set of broad overlapping bands in the OH stretching region. Vibrational spectroscopy enables an assessment of the molecular structure of sturmanite to be made.
Resumo:
Bismuth zinc niobium oxide (BZN) was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.
Resumo:
Magnetic behavior of soils can seriously hamper the performance of geophysical sensors. Currently, we have little understanding of the types of minerals responsible for the magnetic behavior, as well as their distribution in space and evolution through time. This study investigated the magnetic characteristics and mineralogy of Fe-rich soils developed on basaltic substrate in Hawaii. We measured the spatial distribution of magnetic susceptibility (χlf) and frequency dependence (χfd%) across three test areas in a well-developed eroded soil on Kaho'olawe and in two young soils on the Big Island of Hawaii. X-ray diffraction spectroscopy, x-ray fluorescence spectroscopy (XFCF), chemical dissolution, thermal analysis, and temperature-dependent magnetic studies were used to characterize soil development and mineralogy for samples from soil pits on Kaho'olawe, surface samples from all three test areas, and unweathered basalt from the Big Island of Hawaii. The measurements show a general increase in magnetic properties with increasing soil development. The XRF Fe data ranged from 13% for fresh basalt and young soils on the Big Island to 58% for material from the B horizon of Kaho'olawe soils. Dithionite-extractable and oxalate-extractable Fe percentages increase with soil development and correlate with χlf-and χfd%, respectively. Results from the temperature-dependent susceptibility measurements show that the high soil magnetic properties observed in geophysical surveys in Kaho'olawe are entirely due to neoformed minerals. The results of our studies have implications for the existing soil survey of Kaho'olawe and help identify methods to characterize magnetic minerals in tropical soils.
Resumo:
The mineral coquimbite has been analysed using a range of techniques including SEM with EDX, thermal analytical techniques and Raman and infrared spectroscopy. The mineral originated from the Javier Ortega mine, Lucanas Province, Peru. The chemical formula was determined as ðFe3þ 1:37; Al0:63ÞP2:00ðSO4Þ3 9H2O. Thermal analysis showed a total mass loss of 73.4% on heating to 1000 C. A mass loss of 30.43% at 641.4 C is attributed to the loss of SO3. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of sulphate tetrahedra, aluminium oxide/hydroxide octahedra, water molecules and hydroxyl ions. The Raman spectrum shows well resolved bands at 2994, 3176, 3327, 3422 and 3580 cm 1 attributed to water stretching vibrations. Vibrational spectroscopy combined with thermal analysis provides insight into the structure of coquimbite.
Resumo:
Burkeite formation is important in saline evaporites and in pipe scales. Burkeite is an anhydrous sulphate-carbonate with an apparent variable anion ratio. Such a formula with two oxyanions lends itself to vibrational spectroscopy. Two symmetric sulphate stretching modes are observed, indicating at least at the molecular level the nonequivalence of the sulphate ions in the burkeite structure. The strong Raman band at 1065 cm−1 is assigned to the carbonate symmetric stretching vibration. The series of Raman bands at 622, 635, 645, and 704 cm−1 are assigned to the ν4 sulphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from T d to C 3v or even C 2v.
Resumo:
We have studied the mineral Ca(H4B3O7)(OH)⋅4(H2O) or CaB3O3(OH)5⋅4(H2O) using electron microscopy and vibrational spectroscopy. The mineral has been characterized by a range of techniques including X-ray diffraction, thermal analysis, electron microscopy with EDX and vibrational spectroscopy. Electron microscopy shows a pure phase and the chemical analysis shows the presence of calcium only. The nominal resolution of the Raman spectrometer is of the order of 2 cm−1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. Raman and infrared bands are assigned to the stretching and bending modes of trigonal and tetrahedral boron and the stretching modes of the hydroxyl and water units. By using a combination of techniques we have characterized the borate mineral inyoite.
Resumo:
The co-curing process for advanced grid-stiffened (AGS) composite structure is a promising manufacturing process, which could reduce the manufacturing cost, augment the advantages and improve the performance of AGS composite structure. An improved method named soft-mold aided co-curing process which replaces the expansion molds by a whole rubber mold is adopted in this paper. This co-curing process is capable to co-cure a typical AGS composite structure with the manufacturer’s recommended cure cycle (MRCC). Numerical models are developed to evaluate the variation of temperature and the degree of cure in AGS composite structure during the soft-mold aided co-curing process. The simulation results were validated by experimental results obtained from embedded temperature sensors. Based on the validated modeling framework, the cycle of cure can be optimized by reducing more than half the time of MRCC while obtaining a reliable degree of cure. The shape and size effects of AGS composite structure on the distribution of temperature and degree of cure are also investigated to provide insights for the optimization of soft-mold aided co-curing process.
Resumo:
A new procedure for the preparation of amorphous Ni-Co-B nanoparticles is reported, with a detailed investigation of their morphology by X-ray diffraction and transmission electron microscopy, as well as their magnetic properties. Many factors, such as chemical composition, anisotropy, size and shape of the particles, were controlled through chemical synthesis, resulting in the control of morphological and magnetic properties of the nanoparticles. Controlling pH values with ethylenediamine and using sodium dodecyl sulfate surfactant lowered the size of the nanoparticles to below 10 nm. Such a small structure and chemical disorder in nanocrystalline materials lead to magnetic properties that are different from those in their bulk-sized counterparts. The obtained nanoparticles can be used for different purposes, from pharmaceutical applications to implementations in different materials technology. The focus of this research is the synthesis of Ni-Co-B nanoparticles in a new way and studying the reaction of Ni-Co-B nanoparticles with Mg and B precursors and their effect on MgB2 properties. New nanostructures are formed in the reaction of Ni-Co-B nanoparticles with Mg: Mg2Ni, Co2Mg and possibly Mg2Co.