411 resultados para surface–enhanced Raman spectroscopy
Resumo:
The mixed anion mineral dixenite has been studied by Raman spectroscopy, complimented with infrared spectroscopy. The Raman spectrum of dixenite shows bands at 839 and 813 cm-1 assigned to the (AsO3)3- symmetric and antisymmetric stretching modes. The most intense Raman band of dixenite is the band at 526 cm-1 and is assigned to the ν2 AsO33- bending mode. DFT calculations enabled the position of AsO22- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. Raman bands at 1026 and 1057 cm-1 are assigned to the SiO42- symmetric stretching vibrations and at 1349 and 1386 cm-1 to the SiO42- antisymmetric stretching vibrations. Both Raman and infrared spectra indicate the presence of water in the structure of dixenite. This brings into question the commonly accepted formula of dixenite as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6. The formula may be better written as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6•xH2O.
Resumo:
Raman and infrared spectroscopies were used to characterise two samples of triclinic ejkaite Na4[UO2(CO3)3] and its synthetic trigonal analogue. The v3 (UO2)2+ mode is not Raman active, whereas both the v3 and v1 (UO2)2+ modes are infrared active. U--O bond lengths in uranyls were calculated from the spectra obtained and compared with bond lengths derived from crystal structure analyses. From the higher number of bands related to the uranyl and carbonate vibrations, the presence of symmetrically distinct (UO2)2+ and (CO3)2- units in both structures is proposed.
Resumo:
Raman spectroscopy has been used to study the arsenate minerals haidingerite Ca(AsO3OH)•H2O and brassite Mg(AsO3OH)•4H2O. Intense Raman bands in haidingerite spectrum observed at 745 and 855 cm-1 are assigned to the (AsO3OH)2- ν3 antisymmetric stretching and ν1 symmetric stretching vibrational modes. For brassite two similarly assigned intense bands are found at 809 and 862 cm-1. The observation of multiple Raman bands in the (AsO3OH)2- stretching and bending regions suggests that the arsenate tetrahedrons in the crystal structures of both minerals studied are strongly distorted. Broad Raman bands observed at 2842 cm-1 for haidingerite and 3035 cm-1 for brassite indicate strong hydrogen bonding of water molecules in the structure of these minerals. OH…O hydrogen bond lengths were calculated from the Raman spectra based on empiric relations.
Resumo:
The kaolinite-like phyllosilicate minerals bismutoferrite BiFe3+2Si2O8(OH) and chapmanite SbFe3+2Si2O8(OH) have been studied by Raman spectroscopy and complemented with infrared spectra. Tentatively interpreted spectra were related to their molecular structure. The antisymmetric and symmetric stretching vibrations of the Si-O-Si bridges, SiOSi and OSiO bending vibrations, (Si-Oterminal)- stretching vibrations, OH stretching vibrations of hydroxyl ions, and OH bending vibrations were attributed to observed bands. Infrared bands 3289-3470 cm-1 and Raman bands 1590-1667 cm-1 were assigned to adsorbed water. O-H...O hydrogen bond lengths were calculated from the Raman and infrared spectra.
Resumo:
Several specimens of Libyan Desert Glass (LDG), an enigmatic natural glass from Egypt, were subjected to investigation by micro-Raman spectroscopy. The spectra of inclusions inside the LDG samples were successfully measured through the layers of glass and the mineral species were identified on this basis. The presence of cristobalite as typical for high-temperature melt products was confirmed, together with co-existing quartz. TiO2 was determined in two polymorphic species, rutile and anatase. Micro-Raman spectroscopy proved also the presence of minerals unusual for high-temperature glasses such as anhydrite and aragonite.
Resumo:
The mineral geminite, an hydrated hydroxy-arsenate mineral of formula Cu(AsO3OH)•H2O, has been studied by Raman and infrared spectroscopy. Two minerals from different origins were investigated and the spectra proved quite similar. In the Raman spectra of geminite, four bands are observed at 813, 843, 853 and 885 cm-1. The assignment of these bands is as follows: (a) The band at 853 cm-1 is assigned to the AsO43- ν1 symmetric stretching mode (b) the band at 885 cm-1 is assigned to the AsO3OH2- ν1 symmetric stretching mode (c) the band at 843 cm-1 is assigned to the AsO43- ν3 antisymmetric stretching mode (d) the band at 813 cm-1 is ascribed to the AsO3OH2- ν3 antisymmetric stretching mode. Two Raman bands at 333 and 345 cm-1 are attributed to the ν2 AsO4 3- bending mode and a set of higher wavenumber bands are assigned to the ν4 AsO43- bending mode. A very complex set of overlapping bands is observed in both the Raman and infrared spectra. Raman bands are observed at 2288, 2438, 2814, 3152, 3314, 3448 and 3521 cm-1. Two Raman bands at 2288 and 2438 cm-1 are ascribed to very strongly hydrogen bonded water. The broader Raman bands at 3152 and 3314 cm-1 may be assigned to adsorbed water and not so strongly hydrogen bonded water in the molecular structure of geminate. Two bands at 3448 and 3521 cm-1 are assigned to the OH stretching vibrations of the (AsO3OH)2- units. Raman spectroscopy identified Raman bands attributable to AsO43- and AsO3OH2- units.
Resumo:
The removal of arsenate anions from aqueous media, sediments and wasted soils is of environmental significance. The reaction of gypsum with the arsenate anion results in pharmacolite mineral formation, together with related minerals. Raman and infrared spectroscopy have been used to study the mineral pharmacolite Ca(HAsO4)•2H2O. The mineral is characterised by an intense Raman band at 865 cm-1 assigned to the (AsO4)3- symmetric stretching mode. The equivalent infrared band is found at 864 cm-1. The low intensity Raman band at 886 cm-1 provides evidence for (AsO3OH)2-. A series of overlapping bands in the 300 to 450 cm-1 are attributed to ν2 and ν4 bending modes. Prominent Raman bands at around 3187 cm-1 are assigned to water OH stretching vibrations and the two sharp bands at 3425 and 3526 cm-1 to the OH stretching vibrations of (HOAsO3) units.
Resumo:
Raman spectra of bottinoite Ni[Sb(OH)6].6H2O were studied, and related to the molecular structure of the mineral. An intense sharp Raman band at 618 cm-1 is attributed to the SbO symmetric stretching mode. The low intensity band at 735 cm-1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity Raman bands were found at 501, 516 and 578 cm-1. Four Raman bands observed at 1045, 1080, 1111 and 1163 cm-1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3223, 3228, 3368, 3291, 3458 and 3510 cm-1. The first two Raman bands are assigned to water stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm-1 and two infrared bands at 3434 and 3565 cm-1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands are connected with O-H…O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared).
Resumo:
Raman spectra of the uranyl titanate mineral betafite were obtained and related to the mineral structure. A comparison is made with the spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of betafite are comparable with those of the uranyl oxyhydroxides. The mineral betafite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.
Resumo:
The transition of disc-like chromium hydroxide nanomaterials to chromium oxide nanomaterials has been studied by hot stage Raman spectroscopy. The structure and morphology of α-CrO(OH) synthesised using hydrothermal treatment was confirmed by X-ray diffraction and transmission electron microscopy. The Raman spectrum of α-CrO(OH) is characterised by two intense bands at 823 and 630 cm-1 attributed to ν1 CrIII-O symmetric stretching mode, bands at 1179 cm-1 attributed to CrIII-OH δ deformation modes. No bands are observed above 3000 cm-1. The absence of characteristic OH vibrational bands may be due to short hydrogen bonds in the α-CrO(OH) structure. Upon thermal treatment of α-CrO(OH), new Raman bands are observed at 599, 542, 513, 396, 344 and 304 cm-1, which are attributed to Cr2O3. This hot-stage Raman study shows that the transition of α-CrO(OH) to Cr2O3 occurs before 350 °C.
Resumo:
Chromium oxide gel material was synthesised and appeared to be X-ray amorphous. The changes in the structure of the synthetic chromium oxide gel were investigated using hot-stage Raman spectroscopy based upon the results of thermogravimetric analysis. The thermally decomposed product of the synthetic chromium oxide gel in nitrogen atmosphere was confirmed to be crystalline Cr2O3 as determined by the hot-stage Raman spectra. Two bands were observed at 849 and 735 cm-1 in the Raman spectrum at 25 °C, which were attributed to the symmetric stretching modes of O-CrIII-OH and O-CrIII-O. With temperature increase, the intensity of the band at 849 cm-1 decreased, while the band at 735 cm-1 increased. These changes in intensity are attributed to the loss of OH groups and formation of O-CrIII-O units in the structure. A strongly hydrogen bonded water H-O-H bending band was found at 1704 cm-1 in the Raman spectrum of the chromium oxide gel, however this band shifted to around 1590 cm-1 due to destruction of the hydrogen bonds upon thermal treatment. Six new Raman bands were observed at 578, 540, 513, 390, 342 and 303 cm-1 attributed to the thermal decomposed product Cr2O3. The use of the hot-stage Raman microscope enabled low-temperature phase changes brought about through dehydration and dehydroxylation to be studied.
Resumo:
Raman spectra of the uranyl titanate mineral holfertite CaxU2-xTi(O8-xOH4x)•3H2O were analysed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O stretching, bending. The mineral holfertite is metamict as is evidenced by order/disorder of the mineral. Unexpectedly the Raman spectrum of holfertite does not show any metamictization. The intensity of the UO stretching and bending modes show normal intensity and the bands are sharp.
Resumo:
The mineral dussertite, a hydroxy-arsenate mineral of formula BaFe3+3(AsO4)2(OH)5, has been studied by Raman complimented with infrared spectroscopy. The spectra of three minerals from different origins were investigated and proved quite similar, although some minor differences were observed. In the Raman spectra of Czech dussertite, four bands are observed in the 800 to 950 cm-1 region. The bands are assigned as follows: the band at 902 cm-1 is assigned to the (AsO4)3- ν3 antisymmetric stretching mode, at 870 cm-1 to the (AsO4)3- ν1 symmetric stretching mode, and both at 859 cm-1 and 825 cm-1 to the As-OM2+/3+ stretching modes/and or hydroxyls bending modes. Raman bands at 372 and 409 cm-1 are attributed to the ν2 (AsO4)3- bending mode and the two bands at 429 and 474 cm-1 are assigned to the ν4 (AsO4)3- bending mode. An intense band at 3446 cm-1 in the infrared spectrum and a complex set of bands centred upon 3453 cm-1 in the Raman spectrum are attributed to the stretching vibrations of the hydrogen bonded (OH)- units and/or water units in the mineral structure. The broad infrared band at 3223 cm-1 is assigned to the vibrations of hydrogen bonded water molecules. Raman spectroscopy identified Raman bands attributable to (AsO4)3- and (AsO3OH)2- units.