92 resultados para shot noise
Resumo:
Convex potential minimisation is the de facto approach to binary classification. However, Long and Servedio [2008] proved that under symmetric label noise (SLN), minimisation of any convex potential over a linear function class can result in classification performance equivalent to random guessing. This ostensibly shows that convex losses are not SLN-robust. In this paper, we propose a convex, classification-calibrated loss and prove that it is SLN-robust. The loss avoids the Long and Servedio [2008] result by virtue of being negatively unbounded. The loss is a modification of the hinge loss, where one does not clamp at zero; hence, we call it the unhinged loss. We show that the optimal unhinged solution is equivalent to that of a strongly regularised SVM, and is the limiting solution for any convex potential; this implies that strong l2 regularisation makes most standard learners SLN-robust. Experiments confirm the unhinged loss’ SLN-robustness.
Resumo:
In this paper, a refined classic noise prediction method based on the VISSIM and FHWA noise prediction model is formulated to analyze the sound level contributed by traffic on the Nanjing Lukou airport connecting freeway before and after widening. The aim of this research is to (i) assess the traffic noise impact on the Nanjing University of Aeronautics and Astronautics (NUAA) campus before and after freeway widening, (ii) compare the prediction results with field data to test the accuracy of this method, (iii) analyze the relationship between traffic characteristics and sound level. The results indicate that the mean difference between model predictions and field measurements is acceptable. The traffic composition impact study indicates that buses (including mid-sized trucks) and heavy goods vehicles contribute a significant proportion of total noise power despite their low traffic volume. In addition, speed analysis offers an explanation for the minor differences in noise level across time periods. Future work will aim at reducing model error, by focusing on noise barrier analysis using the FEM/BEM method and modifying the vehicle noise emission equation by conducting field experimentation.