324 resultados para shear-stress
Resumo:
This paper presents the details of numerical studies on the shear strength of a recently devel-oped, cold-formed steel channel beam known as LiteSteel Beam (LSB) with web openings. The LSB sections are commonly used as floor joists and bearers in residential, industrial and commercial buildings. In these ap-plications they often include web openings for the purpose of locating services. This has raised concerns over the shear capacity of LSB floor joists and bearers. Therefore experimental and numerical studies were under-taken to investigate the shear behavior and strength of LSBs with web openings. In this research, finite ele-ment models of LSBs with web openings in shear were developed to simulate the shear behavior of LSBs. It was found that currently available design equations are conservative or unconservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and numerical study results.
Resumo:
This paper presents the details of a parametric study based on finite element analyses (FEA) and development of design rules for the shear strength of a recently developed, cold-formed steel channel beam known as LiteSteel Beam (LSB). The LSB sections are commonly used as flexural members in residential, in-dustrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research stu-dies have been undertaken on the flexural behaviour of LSBs. However, no research has been undertaken on the shear behaviour of LSBs. Therefore a detailed investigation including both numerical and experimental studies was undertaken to investigate the shear behaviour of LSBs. Both the experimental and FEA parametric study results showed that the current design rules in cold-formed steel design codes are very conservative for the shear design of LSBs. New shear strength equations for LSBs were proposed based on the experimental and FEA parametric study results.
Resumo:
Previous research has shown the association between stress and crash involvement. The impact of stress on road safety may also be mediated by behaviours including cognitive lapses, errors, and intentional traffic violations. This study aimed to provide a further understanding of the impact that stress from different sources may have upon driving behaviour and road safety. It is asserted that both stress extraneous to the driving environment and stress directly elicited by driving must be considered part of a dynamic system that may have a negative impact on driving behaviours. Two hundred and forty-seven public sector employees from Queensland, Australia, completed self-report measures examining demographics, subjective work-related stress, daily hassles, and aspects of general mental health. Additionally, the Driver Behaviour Questionnaire (DBQ) and the Driver Stress Inventory (DSI) were administered. All participants drove for work purposes regularly, however the study did not specifically focus on full-time professional drivers. Confirmatory factor analysis of the predictor variables revealed three factors: DSI negative affect; DSI risk taking; and extraneous influences (daily hassles, work-related stress, and general mental health). Moderate intercorrelations were found between each of these factors confirming the ‘spillover’ effect. That is, driver stress is reciprocally related to stress in other domains including work and domestic life. Structural equation modelling (SEM) showed that the DSI negative affect factor influenced both lapses and errors, whereas the DSI risk-taking factor was the strongest influence on violations. The SEMs also confirmed that daily hassles extraneous to the driving environment may influence DBQ lapses and violations independently. Accordingly, interventions may be developed to increase driver awareness of the dangers of excessive emotional responses to both driving events and daily hassles (e.g. driving fast to ‘blow off steam’ after an argument). They may also train more effective strategies for self-regulation of emotion and coping when encountering stressful situations on the road.
Resumo:
Fracture healing is influenced by fixation stability and experimental evidence suggests that the initial mechanical conditions may determine the healing outcome. We hypothesised that mechanical conditions influence not only the healing outcome, but also the early phase of fracture healing. Additionally, it was hypothesised that decreased fixation stability characterised by an increased shear interfragmentary movement results in a delay in healing. Sixty-four sheep underwent a mid-shaft tibial osteotomy which was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture callus was analysed using radiological, biomechanical and histological techniques. The tibia treated with semi-rigid fixation showed inferior callus stiffness and quality after 6 weeks. At 9 weeks, the calluses were no longer distinguishable in their mechanical competence. The calluses at 9 weeks produced under rigid fixation were smaller and consisted of a reduced fibrous tissue component. These results demonstrate that the callus formation over the course of healing differed both morphologically and in the rate of development. In this study, we provide evidence that the course of healing is influenced by the initial fixation stability. The semi-rigid fixator did not result in delayed healing, but a less optimal healing path was taken. An upper limit of stability required for successful healing remains unknown, however a limit by which healing is less optimal has been determined.
Resumo:
The increasing incidence of occupational stress is recognized as a global phenomenon that is having a detrimental impact on both individuals and organizations. This study aims to identify whether men and women adopt different stress and coping processes when subjected to stress in a work context. A total of 258 workers of various professions (males = 106, females = 152) participated in the study. Results indicated that men and women differ in their stress and coping processes, forming two very distinct groups and adopting specific process models when encountering a stressful situation at work. Limitations and implications from this study are discussed.
Elasto-plastic stress analysis of an insulated rail joint (IRJ) with a loading below shakedown limit
Resumo:
A finite element numerical simulation is carried out to examine stress distributions on railhead in the vicinity of the endpost of a insulated rail joint. The contact patch and pressure distribution are considered using modified Hertzian formulation. A combined elasto-plastic material modelling available in Abaqus is employed in the simulation. A dynamic load factor of 1.21 is considered in modelling for the wheel load based on a previous study as part of this on going research. Shakedown theorem is employed in this study. A peak pressure load which is above the shakedown limit is determined as input load. As a result, a progressive damage in the railhead has been captured as depicted in the equivalent plastic strain plot.
Resumo:
In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in a wide spectrum of areas, ranging from nondestructive testing for the detection of materials defects to monitoring of microseismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary longitudinal waves), S waves (shear/transverse waves) and Rayleigh (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use acoustic emission technique for accurate identification of source, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals along with the characteristics of the source. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location and its characteristics in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.
Resumo:
Differential axial deformation between column elements and shear wall elements of cores increase with building height and geometric complexity. Adverse effects due to the differential axial deformation reduce building performance and life time serviceability. Quantifying axial deformations using ambient measurements from vibrating wire, external mechanical and electronic strain gauges in order to acquire adequate provisions to mitigate the adverse effects is well established method. However, these gauges require installing in or on elements to acquire continuous measurements and hence use of these gauges is uneconomical and inconvenient. This motivates to develop a method to quantify the axial deformations. This paper proposes an innovative method based on modal parameters to quantify axial deformations of shear wall elements in cores of buildings. Capabilities of the method are presented though an illustrative example.