485 resultados para rat exposure test


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dasheen mosaic potyvirus (DsMV) is an important virus affecting taro. The virus has been found wherever taro is grown and infects both the edible and ornamental aroids, causing yield losses of up to 60%. The presence of DsMV, and other viruses,prevents the international movement of taro germplasm between countries. This has a significant negative impact on taro production in many countries due to the inability to access improved taro lines produced in breeding programs. To overcome this problem, sensitive and reliable virus diagnostic tests need to be developed to enable the indexing of taro germplasm. The aim of this study was to generate an antiserum against a recombinant DsMV coat protein (CP) and to develop a serological-based diagnostic test that would detect Pacific Island isolates of the virus. The CP-coding region of 16 DsMV isolates from Papua New Guinea, Samoa, Solomon Islands, French Polynesia, New Caledonia and Vietnam were amplified,cloned and sequenced. The size of the CP-coding region ranged from 939 to 1038 nucleotides and encoded putative proteins ranged from 313 to 346 amino acids, with the molecular mass ranging from 34 to 38 kDa. Analysis ofthe amino acid sequences revealed the presence of several amino acid motifs typically found in potyviruses,including DAG, WCIE/DN, RQ and AFDF. When the amino acid sequences were compared with each other and the DsMV sequences on the database, the maximum variability was21.9%. When the core region ofthe CP was analysed, the maximum variability dropped to 6% indicating most variability was present in the N terminus. Within seven PNG isolates ofDsMV, the maximum variability was 16.9% and 3.9% over the entire CP-coding region and core region, respectively. The sequence ofPNG isolate P1 was most similar to all other sequences. Phylogenetic analysis indicated that almost all isolates grouped according to their provenance. Further, the seven PNG isolates were grouped according to the region within PNG from which they were obtained. Due to the extensive variability over the entire CP-coding region, the core region ofthe CP ofPNG isolate Pl was cloned into a protein expression vector and expressed as a recombinant protein. The protein was purified by chromatography and SDS-PAGE and used as an antigen to generate antiserum in a rabbit. In western blots, the antiserum reacted with bands of approximately 45-47 kDa in extracts from purified DsMV and from known DsMV -infected plants from PNG; no bands were observed using healthy plant extracts. The antiserum was subsequently incorporated into an indirect ELISA. This procedure was found to be very sensitive and detected DsMV in sap diluted at least 1:1,000. Using both western blot and ELISA formats,the antiserum was able to detect a wide range ofDsMV isolates including those from Australia, New Zealand, Fiji, French Polynesia, New Caledonia, Papua New Guinea, Samoa, Solomon Islands and Vanuatu. These plants were verified to be infected with DsMV by RT-PCR. In specificity tests, the antiserum was also found to react with sap from plants infected with SCMV, PRSV-P, PRSV-W, but not with PVY or CMV -infected plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lane Change Test (LCT) is one of the growing number of methods developed to quantify driving performance degradation brought about by the use of in-vehicle devices. Beyond its validity and reliability, for such a test to be of practical use, it must also be sensitive to the varied demands of individual tasks. The current study evaluated the ability of several recent LCT lateral control and event detection parameters to discriminate between visual-manual and cognitive surrogate In-Vehicle Information System tasks with different levels of demand. Twenty-seven participants (mean age 24.4 years) completed a PC version of the LCT while performing visual search and math problem solving tasks. A number of the lateral control metrics were found to be sensitive to task differences, but the event detection metrics were less able to discriminate between tasks. The mean deviation and lane excursion measures were able to distinguish between the visual and cognitive tasks, but were less sensitive to the different levels of task demand. The other LCT metrics examined were less sensitive to task differences. A major factor influencing the sensitivity of at least some of the LCT metrics could be the type of lane change instructions given to participants. The provision of clear and explicit lane change instructions and further refinement of its metrics will be essential for increasing the utility of the LCT as an evaluation tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1984, the International Agency for Research on Cancer determined that working in the primary aluminium production process was associated with exposure to certain polycyclic aromatic hydrocarbons (PAHs) that are probably carcinogenic to humans. Key sources of PAH exposure within the occupational environment of a prebake aluminium smelter are processes associated with use of coal-tar pitch. Despite the potential for exposure via inhalation, ingestion and dermal adsorption, to date occupational exposure limits exist only for airborne contaminants. This study, based at a prebake aluminium smelter in Queensland, Australia, compares exposures of workers who came in contact with PAHs from coal-tar pitch in the smelter’s anode plant (n = 69) and cell-reconstruction area (n = 28), and a non-production control group (n = 17). Literature relevant to PAH exposures in industry and methods of monitoring and assessing occupational hazards associated with these compounds are reviewed, and methods relevant to PAH exposure are discussed in the context of the study site. The study utilises air monitoring of PAHs to quantify exposure via the inhalation route and biological monitoring of 1-hydroxypyrene (1-OHP) in urine of workers to assess total body burden from all routes of entry. Exposures determined for similar exposure groups, sampled over three years, are compared with published occupational PAH exposure limits and/or guidelines. Results of paired personal air monitoring samples and samples collected for 1-OHP in urine monitoring do not correlate. Predictive ability of the benzene-soluble fraction (BSF) in personal air monitoring in relation to the 1-OHP levels in urine is poor (adjusted R2 < 1%) even after adjustment for potential confounders of smoking status and use of personal protective equipment. For static air BSF levels in the anode plant, the median was 0.023 mg/m3 (range 0.002–0.250), almost twice as high as in the cell-reconstruction area (median = 0.013 mg/m3, range 0.003–0.154). In contrast, median BSF personal exposure in the anode plant was 0.036 mg/m3 (range 0.003–0.563), significantly lower than the median measured in the reconstruction area (0.054 mg/m3, range 0.003–0.371) (p = 0.041). The observation that median 1-OHP levels in urine were significantly higher in the anode plant than in the reconstruction area (6.62 µmol/mol creatinine, range 0.09–33.44 and 0.17 µmol/mol creatinine, range 0.001–2.47, respectively) parallels the static air measurements of BSF rather than the personal air monitoring results (p < 0.001). Results of air measurements and biological monitoring show that tasks associated with paste mixing and anode forming in the forming area of the anode plant resulted in higher PAH exposure than tasks in the non-forming areas; median 1-OHP levels in urine from workers in the forming area (14.20 µmol/mol creatinine, range 2.02–33.44) were almost four times higher than those obtained from workers in the non-forming area (4.11 µmol/mol creatinine, range 0.09–26.99; p < 0.001). Results justify use of biological monitoring as an important adjunct to existing measures of PAH exposure in the aluminium industry. Although monitoring of 1-OHP in urine may not be an accurate measure of biological effect on an individual, it is a better indicator of total PAH exposure than BSF in air. In January 2005, interim study results prompted a plant management decision to modify control measures to reduce skin exposure. Comparison of 1-OHP in urine from workers pre- and post-modifications showed substantial downward trends. Exposure via the dermal route was identified as a contributor to overall dose. Reduction in 1-OHP urine concentrations achieved by reducing skin exposure demonstrate the importance of exposure via this alternative pathway. Finally, control measures are recommended to ameliorate risk associated with PAH exposure in the primary aluminium production process, and suggestions for future research include development of methods capable of more specifically monitoring carcinogenic constituents of PAH mixtures, such as benzo[a]pyrene.