140 resultados para quasi-least squares
Resumo:
Purpose The neuromuscular mechanisms determining the mechanical behaviour of the knee during landing impact remain poorly understood. It was hypothesised that neuromuscular preparation is subject-specific and ranges along a continuum from passive to active. Methods A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials. Surface EMG of the quadriceps and hamstrings was used to determine pre-impact onset timing, activation amplitude and cocontraction for each trial. Partial least squares regression was used to associate pre-impact preparation with post-impact knee stiffness and coordination. Results The group analysis revealed few significant changes in pre-impact preparation across trial blocks. Single-subject analyses revealed changes in muscle activity that varied in size and direction between individuals. Further, the association between pre-impact preparation and post-impact knee mechanics was subject-specific and ranged along a continuum of strategies. Conclusion The findings suggest that neuromuscular preparation during step landing is subject-specific and its association to post-impact knee mechanics occurs along a continuum, ranging from passive to active control strategies. Further work should examine the implications of these strategies on the distribution of knee forces in-vivo.
Resumo:
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in industrialized societies. The lack of metabolite biomarkers has impeded the clinical diagnosis of atherosclerosis so far. In this study, stable atherosclerosis patients (n=16) and age- and sex-matched non-atherosclerosis healthy subjects (n=28) were recruited from the local community (Harbin, P. R. China). The plasma was collected from each study subject and was subjected to metabolomics analysis by GC/MS. Pattern recognition analyses (principal components analysis, orthogonal partial least-squares discriminate analysis, and hierarchical clustering analysis) commonly demonstrated plasma metabolome, which was significantly different from atherosclerotic and non-atherosclerotic subjects. The development of atherosclerosis-induced metabolic perturbations of fatty acids, such as palmitate, stearate, and 1-monolinoleoylglycerol, was confirmed consistent with previous publication, showing that palmitate significantly contributes to atherosclerosis development via targeting apoptosis and inflammation pathways. Altogether, this study demonstrated that the development of atherosclerosis directly perturbed fatty acid metabolism, especially that of palmitate, which was confirmed as a phenotypic biomarker for clinical diagnosis of atherosclerosis.
Resumo:
Poor health and injury represent major obstacles to the future economic security of Australia. The national economic cost of work-related injury is estimated at $57.5 billion p/a. Since exposure to high physical demands is a major risk factor for musculoskeletal injury, monitoring and managing such physical activity levels in workers is a potentially important injury prevention strategy. Current injury monitoring practices are inadequate for the provision of clinically valuable information about the tissue specific responses to physical exertion. Injury of various soft tissue structures can manifest over time through accumulation of micro-trauma. Such micro-trauma has a propensity to increase the risk of acute injuries to soft-tissue structures such as muscle or tendon. As such, the capacity to monitor biomarkers that result from the disruption of these tissues offers a means of assisting the pre-emptive management of subclinical injury prior to acute failure or for evaluation of recovery processes. Here we have adopted an in-vivo exercise induced muscle damage model allowing the application of laboratory controlled conditions to assist in uncovering biochemical indicators associated with soft-tissue trauma and recovery. Importantly, urine was utilised as the diagnostic medium since it is non-invasive to collect, more acceptable to workers and less costly to employers. Moreover, it is our hypothesis that exercise induced tissue degradation products enter the circulation and are subsequently filtered by the kidney and pass through to the urine. To test this hypothesis a range of metabolomic and proteomic discovery-phase techniques were used, along with targeted approaches. Several small molecules relating to tissue damage were identified along with a series of skeletal muscle-specific protein fragments resulting from exercise induced soft-tissue damage. Each of the potential biomolecular markers appeared to be temporally present within urine. Moreover, the regulation of abundance seemed to be associated with functional recovery following the injury. This discovery may have important clinical applications for monitoring of a variety of inflammatory myopathies as well as novel applications in monitoring of the musculoskeletal health status of workers, professional athletes and/or military personnel to reduce the onset of potentially debilitating musculoskeletal injuries within these professions.
Resumo:
We estimated genetic changes in body and carcass weight traits in a giant freshwater prawn (GFP) (Macrobrachium rosenbergii) population selected for increased body weight at harvest in Vietnam. The data set consisted of 18,387 individual body and 1730 carcass weight records, as well as full pedigree information collected over four generations. Average selection response (per generation) in body weight at harvest (transformed to square root) estimated as the difference between the Selection line and the Control group was 7.4% calculated from least squares mean (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favorable correlated selection responses (estimated from LSMs) were found for other body traits including: total length, cephalothorax length, abdominal length, cephalothorax width, and abdominal width (12.1%, 14.5%, 10.4%, 15.5% and 13.3% over three selection generations, respectively). Data in the second generation of selection showed positive correlated responses for carcass weight traits including: abdominal weight, exoskeleton-off weight, and telson-off weight of 8.8%, 8.6% and 8.8%, respectively. We conclude that body weight at harvest responded well to the application of combined (between and within) family selection and correlated responses in carcass weight traits were favorable.
Resumo:
Aim To examine the mediating effect of coping strategies on the consequences of nursing and non-nursing (administrative) stressors on the job satisfaction of nurses during change management. Background Organisational change can result in an increase in nursing and nonnursing- related stressors, which can have a negative impact on the job satisfaction of nurses employed in health-care organisations. Method Matched data were collected in 2009 via an online survey at two timepoints (six months apart). Results Partial least squares path analysis revealed a significant causal relationship between Time 1 administrative and role stressors and an increase in nursing-specific stressors in Time 2. A significant relationship was also identified between job-specific nursing stressors and the adoption of effective coping strategies to deal with increased levels of change-induced stress and strain and the likelihood of reporting higher levels of job satisfaction in Time 2. Conclusions The effectiveness of coping strategies is critical in helping nurses to deal with the negative consequences of organisational change. Implications for nursing management This study shows that there is a causal relationship between change, non-nursing stressors and job satisfaction. Senior management should implement strategies aimed at reducing nursing and nonnursing stress during change in order to enhance the job satisfaction of nurses. Keywords: Australia, change management, job satisfaction, nursing and non-nursing stressors, public and non-profit sector
Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage
Resumo:
The determination of the characteristics of articular cartilage such as thickness, stiffness and swelling, especially in the form that can facilitate real-time decisions and diagnostics is still a matter for research and development. This paper correlates near infrared spectroscopy with mechanically measured cartilage thickness to establish a fast, non-destructive, repeatable and precise protocol for determining this tissue property. Statistical correlation was conducted between the thickness of bovine cartilage specimens (n = 97) and regions of their near infrared spectra. Nine regions were established along the full absorption spectrum of each sample and were correlated with the thickness using partial least squares (PLS) regression multivariate analysis. The coefficient of determination (R2) varied between 53 and 93%, with the most predictive region (R2 = 93.1%, p < 0.0001) for cartilage thickness lying in the region (wavenumber) 5350–8850 cm−1. Our results demonstrate that the thickness of articular cartilage can be measured spectroscopically using NIR light. This protocol is potentially beneficial to clinical practice and surgical procedures in the treatment of joint disease such as osteoarthritis.
Resumo:
This thesis investigates the use of near infrared (NIR) spectroscopic methods for rapid measurement of nutrient elements in mill mud and mill ash. Adoption of NIR-based analyses for carbon, nitrogen, phosphorus, potassium and silicon will allow Australian sugarcane farmers to comply with recent legislative changes, and act within recommended precision farming frameworks. For these analyses, NIR spectroscopic methods surpass several facets of traditional wet chemistry techniques, dramatically reducing costs, required expertise and chemical exposure, while increasing throughput and access to data. Further, this technology can be applied in various modes, including laboratory, at-line and on-line installations, allowing targeted measurement.
Resumo:
Much publicity has been given to the problem of high levels of environmental contaminants, most notably high blood lead concentration levels among children in the city of Mount Isa because of mining and smelting activities. The health impacts from mining-related pollutants are now well documented. This includes published research being discussed in an editorial of the Medical Journal of Australia (see Munksgaard et al. 2010). On the other hand, negative impacts on property prices, although mentioned, have not been examined to date. This study rectifies this research gap. This study uses a hedonic property price approach to examine the impact of mining- and smelting-related pollution on nearby property prices. The hypothesis is that those properties closer to the lead and copper smelters have lower property (house) prices than those farther away. The results of the study show that the marginal willingness to pay to be farther from the pollution source is AUS $13 947 per kilometre within the 4 km radius selected. The study has several policy implications, which are discussed briefly. We used ordinary least squares, geographically weighted regression, spatial error and spatial autoregressive or spatial lag models for this analysis.
Resumo:
Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.
Resumo:
A generalised gamma bidding model is presented, which incorporates many previous models. The log likelihood equations are provided. Using a new method of testing, variants of the model are fitted to some real data for construction contract auctions to find the best fitting models for groupings of bidders. The results are examined for simplifying assumptions, including all those in the main literature. These indicate no one model to be best for all datasets. However, some models do appear to perform significantly better than others and it is suggested that future research would benefit from a closer examination of these.
Resumo:
Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated by prediction data sets.
Resumo:
This study examined the prevalence of depressive symptoms and elucidated the causal pathway between socioeconomic status and depression in a community in the central region of Vietnam. The study used a combination of qualitative and quantitative research methods. Indepth interviews were applied with two local psychiatric experts and ten residents for qualitative research. A cross sectional survey with structured interview technique was implemented with 100 residents in the pilot quantitative survey. The Center for Epidemiological Studies-Depression Scale (CES-D) was applied to valuate depressive symptoms ( CES-D score over 21) and depression ( CESD core over 25). Ordinary Least Squares Regression following the three steps of Baron and Kenny’s framework was employed for testing mediation models. There was a strong social gradient with respect to depressive symptoms. People with higher education levels reported fewer depressive symptoms (lower CES-D scores). Incomes were also inversely associated with depressive symptoms, but only the ones at the bottom of the quartile income. Low level and unstable individuals in terms of occupation were associated with higher depressive symptoms compared with the highest occupation group. Employment status showed the strongest gradient with respect to its impact on the burden of depressive symptoms compared with other indicators of SES. Findings from this pilot study suggest a pattern on the negative association between socioeconomic status and depression in Vietnamese adults.
Context-specific stressors, work-related social support and work-family conflict : a mediation study
Resumo:
Understanding the antecedents of work-family conflict is important as it allows organisations to effectively engage in work design for professional employees. This study examines the impact of sources of social support as antecedents of work-family conflict. The hypotheses were tests using Partial Least Squares modelling on a sample of 366 professional employees. The path model showed that context-specific stressors impacted positively on job demand, which led to higher levels of work-family conflict. Contrary to our expectation, non-work related social support did not have any statistical relationship with job demand and work-family conflict. In addition, individuals experiencing high job demands were found to obtain more social support from both work and non-work-related sources. Individuals with more work-related social support were less likely to have less work-family conflict. Surprisingly, non-work social support sources had no statistically significant relationship with work-family conflict.
Resumo:
Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.
Resumo:
This paper presents a new algorithm based on honey-bee mating optimization (HBMO) to estimate harmonic state variables in distribution networks including distributed generators (DGs). The proposed algorithm performs estimation for both amplitude and phase of each harmonics by minimizing the error between the measured values from phasor measurement units (PMUs) and the values computed from the estimated parameters during the estimation process. Simulation results on two distribution test system are presented to demonstrate that the speed and accuracy of proposed distribution harmonic state estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as weight least square (WLS), genetic algorithm (GA) and tabu search (TS).