254 resultados para preliminary discovery
Resumo:
Although there are widely accepted and utilized models and frameworks for nondirective counseling (NDC), there is little in the way of tools or instruments designed to assist in determining whether or not a specific episode of counseling is consistent with the stated model or framework. The Counseling Progress and Depth Rating Instrument (CPDRI) was developed to evaluate counselor integrity in the use of Egan's skilled helper model in online counseling. The instrument was found to have sound internal consistency, good interrater reliability, and good face and convergent validity. The CPDRI is, therefore, proposed as a useful tool to facilitate investigation of the degree to which counselors adhere to and apply a widely used approach to NDC
Resumo:
A crucial contemporary policy question for governments across the globe is how to cope with international crime and terrorist networks. Many such “dark” networks—that is, networks that operate covertly and illegally—display a remarkable level of resilience when faced with shocks and attacks. Based on an in-depth study of three cases (MK, the armed wing of the African National Congress in South Africa during apartheid; FARC, the Marxist guerrilla movement in Colombia; and the Liberation Tigers of Tamil Eelam, LTTE, in Sri Lanka), we present a set of propositions to outline how shocks impact dark network characteristics (resources and legitimacy) and networked capabilities (replacing actors, linkages, balancing integration and differentiation) and how these in turn affect a dark network's resilience over time. We discuss the implications of our findings for policymakers.
Resumo:
Information has no value unless it is accessible. Information must be connected together so a knowledge network can then be built. Such a knowledge base is a key resource for Internet users to interlink information from documents. Information retrieval, a key technology for knowledge management, guarantees access to large corpora of unstructured text. Collaborative knowledge management systems such as Wikipedia are becoming more popular than ever; however, their link creation function is not optimized for discovering possible links in the collection and the quality of automatically generated links has never been quantified. This research begins with an evaluation forum which is intended to cope with the experiments of focused link discovery in a collaborative way as well as with the investigation of the link discovery application. The research focus was on the evaluation strategy: the evaluation framework proposal, including rules, formats, pooling, validation, assessment and evaluation has proved to be efficient, reusable for further extension and efficient for conducting evaluation. The collection-split approach is used to re-construct the Wikipedia collection into a split collection comprising single passage files. This split collection is proved to be feasible for improving relevant passages discovery and is devoted to being a corpus for focused link discovery. Following these experiments, a mobile client-side prototype built on iPhone is developed to resolve the mobile Search issue by using focused link discovery technology. According to the interview survey, the proposed mobile interactive UI does improve the experience of mobile information seeking. Based on this evaluation framework, a novel cross-language link discovery proposal using multiple text collections is developed. A dynamic evaluation approach is proposed to enhance both the collaborative effort and the interacting experience between submission and evaluation. A realistic evaluation scheme has been implemented at NTCIR for cross-language link discovery tasks.
Resumo:
This article augments Resource Dependence Theory with Real Options reasoning in order to explain time bounds specification in strategic alliances. Whereas prior work has found about a 50/50 split between alliances that are time bound and those that are open-ended, their substantive differences and antecedents are ill understood. To address this, we suggest that the two alliance modes present different real options trade-offs in adaptation to environmental uncertainty: ceteris paribus, time-bound alliances are likely to provide abandonment options over open-ended alliances, but require additional investments to extend the alliance when this turns out to be desirable after formation. Open-ended alliances are likely to provide growth options over open-ended alliances, but they demand additional effort to abandon the alliance if post-formation circumstances so desire. Therefore, we expect time bounds specification to be a function of environmental uncertainty: organizations in more uncertain environments will be relatively more likely to place time bounds on their strategic alliances. Longitudinal archival and survey data collected amongst 39 industry clusters provides empirical support for our claims, which contribute to the recent renaissance of resource dependence theory by specifying the conditions under which organizations choose different time windows in strategic partnering.
Resumo:
The availability of bridges is crucial to people’s daily life and national economy. Bridge health prediction plays an important role in bridge management because maintenance optimization is implemented based on prediction results of bridge deterioration. Conventional bridge deterioration models can be categorised into two groups, namely condition states models and structural reliability models. Optimal maintenance strategy should be carried out based on both condition states and structural reliability of a bridge. However, none of existing deterioration models considers both condition states and structural reliability. This study thus proposes a Dynamic Objective Oriented Bayesian Network (DOOBN) based method to overcome the limitations of the existing methods. This methodology has the ability to act upon as a flexible unifying tool, which can integrate a variety of approaches and information for better bridge deterioration prediction. Two demonstrative case studies are conducted to preliminarily justify the feasibility of the methodology
Resumo:
Discovering proper search intents is a vi- tal process to return desired results. It is constantly a hot research topic regarding information retrieval in recent years. Existing methods are mainly limited by utilizing context-based mining, query expansion, and user profiling techniques, which are still suffering from the issue of ambiguity in search queries. In this pa- per, we introduce a novel ontology-based approach in terms of a world knowledge base in order to construct personalized ontologies for identifying adequate con- cept levels for matching user search intents. An iter- ative mining algorithm is designed for evaluating po- tential intents level by level until meeting the best re- sult. The propose-to-attempt approach is evaluated in a large volume RCV1 data set, and experimental results indicate a distinct improvement on top precision after compared with baseline models.
Resumo:
DeLone and McLean (1992, p. 16) argue that the concept of “system use” has suffered from a “too simplistic definition.” Despite decades of substantial research on system use, the concept is yet to receive strong theoretical scrutiny. Many measures of system use and the development of measures have been often idiosyncratic and lack credibility or comparability. This paper reviews various attempts at conceptualization and measurement of system use and then proposes a re-conceptualization of it as “the level of incorporation of an information system within a user’s processes.” The definition is supported with the theory of work systems, system, and Key-User-Group considerations. We then go on to develop the concept of a Functional- Interface-Point (FIP) and four dimensions of system usage: extent, the proportion of the FIPs used by the business process; frequency, the rate at which FIPs are used by the participants in the process; thoroughness, the level of use of information/functionality provided by the system at an FIP; and attitude towards use, a set of measures that assess the level of comfort, degree of respect and the challenges set forth by the system. The paper argues that the automation level, the proportion of the business process encoded by the information system has a mediating impact on system use. The article concludes with a discussion of some implications of this re-conceptualization and areas for follow on research.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term- based ones in describing user preferences, but many experiments do not support this hypothesis. This research presents a promising method, Relevance Feature Discovery (RFD), for solving this challenging issue. It discovers both positive and negative patterns in text documents as high-level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the high-level features. The thesis also introduces an adaptive model (called ARFD) to enhance the exibility of using RFD in adaptive environment. ARFD automatically updates the system's knowledge based on a sliding window over new incoming feedback documents. It can efficiently decide which incoming documents can bring in new knowledge into the system. Substantial experiments using the proposed models on Reuters Corpus Volume 1 and TREC topics show that the proposed models significantly outperform both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and other pattern-based methods.
Resumo:
Interaction with a mobile device remains difficult due to inherent physical limitations. This dif-ficulty is particularly evident for search, which re-quires typing. We extend the One-Search-Only search paradigm by adding a novel link-browsing scheme built on top of automatic link discovery. A prototype was built for iPhone and tested with 12 subjects. A post-use interview survey suggests that the extended paradigm improves the mobile information seeking experience.
Resumo:
Sourcing appropriate funding for the provision of new urban infrastructure has been a policy dilemma for governments around the world for decades. This is particularly relevant in high growth areas where new services are required to support swelling populations. The Australian infrastructure funding policy dilemmas are reflective of similar matters in many countries, particularly the United States of America, where infrastructure cost recovery policies have been in place since the 1970’s. There is an extensive body of both theoretical and empirical literature from these countries that discusses the passing on (to home buyers) of these infrastructure charges, and the corresponding impact on housing prices. The theoretical evidence is consistent in its findings that infrastructure charges are passed on to home buyers by way of higher house prices. The empirical evidence is also consistent in its findings, with “overshifting” of these charges evident in all models since the 1980’s, i.e. $1 infrastructure charge results in greater than $1 increase in house prices. However, despite over a dozen separate studies over two decades in the US on this topic, no empirical works have been carried out in Australia to test if similar shifting or overshifting occurs here. The purpose of this research is to conduct a preliminary analysis of the more recent models used in these US empirical studies in order to identify the key study area selection criteria and success factors. The paper concludes that many of the study area selection criteria are implicit rather than explicit. By collecting data across the models, some implicit criteria become apparent, whilst others remain elusive. This data will inform future research on whether an existing model can be adopted or adapted for use in Australia.
Resumo:
Discovering factors that help or impede business model change is an important quest, both for researchers and practitioners. In this study we present preliminary findings based on the CAUSEE survey of young and nascent firms in Australia. In particular, we seek to determine an association between business model adaptation and external orientation among young and nascent firms within the random sample and amongst an oversample of high potential firms. The concept of external orientation is made operational by asking respondents whether, and to what extent, they rely on certain sources of advice and information. We find that high potential firms are more likely to have made at least some change to their business model, that greater use of external sources of advice is generally significantly associated with business model adaptation, but also that there appear to be different patterns of behaviour between the random sample and the over sample.
Resumo:
This study examined the effect that temporal order within the entrepreneurial discovery exploitation process has on the outcomes of venture creation. Consistent with sequential theories of discovery-exploitation, the general flow of venture creation was found to be directed from discovery toward exploitation in a random sample of nascent ventures. However, venture creation attempts which specifically follow this sequence derive poor outcomes. Moreover, simultaneous discovery-exploitation was the most prevalent temporal order observed, and venture attempts that proceed in this manner more likely become operational. These findings suggest that venture creation is a multi-scale phenomenon that is at once directional in time, and simultaneously driven by symbiotically coupled discovery and exploitation.
Resumo:
At NTCIR-9, we participated in the cross-lingual link discovery (Crosslink) task. In this paper we describe our approaches to discovering Chinese, Japanese, and Korean (CJK) cross-lingual links for English documents in Wikipedia. Our experimental results show that a link mining approach that mines the existing link structure for anchor probabilities and relies on the “translation” using cross-lingual document name triangulation performs very well. The evaluation shows encouraging results for our system.