300 resultados para plant functional traits
Resumo:
Archaeal transcription utilizes a complex multisubunit RNA polymerase and the basal transcription factors TBP and TF(II)B, closely resembling its eukaryal counterpart. We have uncovered a tight physical and functional interaction between RNA polymerase and the single-stranded DNA-binding protein SSB in Sulfolobus solfataricus. SSB stimulates transcription from promoters in vitro under TBP-limiting conditions and supports transcription in the absence of TBP. SSB also rescues transcription from repression by reconstituted chromatin. We demonstrate the potential for promoter melting by SSB, suggesting a plausible basis for the stimulation of transcription. This stimulation requires both the single-stranded DNA-binding domain and the acidic C-terminal tail of the SSB. The tail forms a stable interaction with RNA polymerase. These data reveal an unexpected role for single-stranded DNA-binding proteins in transcription in archaea.
Resumo:
Plant biosecurity requires statistical tools to interpret field surveillance data in order to manage pest incursions that threaten crop production and trade. Ultimately, management decisions need to be based on the probability that an area is infested or free of a pest. Current informal approaches to delimiting pest extent rely upon expert ecological interpretation of presence / absence data over space and time. Hierarchical Bayesian models provide a cohesive statistical framework that can formally integrate the available information on both pest ecology and data. The overarching method involves constructing an observation model for the surveillance data, conditional on the hidden extent of the pest and uncertain detection sensitivity. The extent of the pest is then modelled as a dynamic invasion process that includes uncertainty in ecological parameters. Modelling approaches to assimilate this information are explored through case studies on spiralling whitefly, Aleurodicus dispersus and red banded mango caterpillar, Deanolis sublimbalis. Markov chain Monte Carlo simulation is used to estimate the probable extent of pests, given the observation and process model conditioned by surveillance data. Statistical methods, based on time-to-event models, are developed to apply hierarchical Bayesian models to early detection programs and to demonstrate area freedom from pests. The value of early detection surveillance programs is demonstrated through an application to interpret surveillance data for exotic plant pests with uncertain spread rates. The model suggests that typical early detection programs provide a moderate reduction in the probability of an area being infested but a dramatic reduction in the expected area of incursions at a given time. Estimates of spiralling whitefly extent are examined at local, district and state-wide scales. The local model estimates the rate of natural spread and the influence of host architecture, host suitability and inspector efficiency. These parameter estimates can support the development of robust surveillance programs. Hierarchical Bayesian models for the human-mediated spread of spiralling whitefly are developed for the colonisation of discrete cells connected by a modified gravity model. By estimating dispersal parameters, the model can be used to predict the extent of the pest over time. An extended model predicts the climate restricted distribution of the pest in Queensland. These novel human-mediated movement models are well suited to demonstrating area freedom at coarse spatio-temporal scales. At finer scales, and in the presence of ecological complexity, exploratory models are developed to investigate the capacity for surveillance information to estimate the extent of red banded mango caterpillar. It is apparent that excessive uncertainty about observation and ecological parameters can impose limits on inference at the scales required for effective management of response programs. The thesis contributes novel statistical approaches to estimating the extent of pests and develops applications to assist decision-making across a range of plant biosecurity surveillance activities. Hierarchical Bayesian modelling is demonstrated as both a useful analytical tool for estimating pest extent and a natural investigative paradigm for developing and focussing biosecurity programs.
Resumo:
NF-Y is a heterotrimeric transcription factor complex. Each of the NF-Y subunits (NF-YA, NF-YB and NF-YC) in plants is encoded by multiple genes. Quantitative RT-PCR analysis revealed that five wheat NF-YC members (TaNF-YC5, 8, 9, 11 & 12) were upregulated by light in both the leaf and seedling shoot. Co-expression analysis of Affymetrix wheat genome array datasets revealed that transcript levels of a large number of genes were consistently correlated with those of the TaNF-YC11 and TaNF-YC8 genes in 3-4 separate Affymetrix array datasets. TaNF-YC11-correlated transcripts were significantly enriched with the Gene Ontology term photosynthesis. Sequence analysis in the promoters of TaNF-YC11-correlated genes revealed the presence of putative NF-Y complex binding sites (CCAAT motifs). Quantitative RT-PCR analysis of a subset of potential TaNF-YC11 target genes showed that ten out of the thirteen genes were also light-upregulated in both the leaf and seedling shoot and had significantly correlated expression profiles with TaNF-YC11. The potential target genes for TaNF-YC11 include subunit members from all four thylakoid membrane bound complexes required for the conversion of solar energy into chemical energy and rate limiting enzymes in the Calvin cycle. These data indicate that TaNF-YC11 is potentially involved in regulation of photosynthesis-related genes.
Resumo:
Nuclear Factor Y (NF-Y) transcription factor is a heterotrimer comprised of three subunits: NF-YA, NF-YB and NF-YC. Each of the three subunits in plants is encoded by multiple genes with differential expression profiles, implying the functional specialisation of NF-Y subunit members in plants. In this study, we investigated the roles of NF-YB members in the light-mediated regulation of photosynthesis genes. We identified two NF-YB members from Triticum aestivum (TaNF-YB3 & 7) which were markedly upregulated by light in the leaves and seedling shoots using quantitative RT-PCR. A genome-wide coexpression analysis of multiple Affymetrix Wheat Genome Array datasets revealed that TaNF-YB3-coexpressed transcripts were highly enriched with the Gene Ontology term photosynthesis. Transgenic wheat lines constitutively overexpressing TaNF-YB3 had a significant increase in the leaf chlorophyll content, photosynthesis rate and early growth rate. Quantitative RT-PCR analysis showed that the expression levels of a number of TaNF-YB3-coexpressed transcripts were elevated in the transgenic wheat lines. The mRNA level of TaGluTR encoding glutamyl-tRNA reductase, which catalyses the rate limiting step of the chlorophyll biosynthesis pathway, was significantly increased in the leaves of the transgenic wheat. Significant increases in the expression level in the transgenic plant leaves were also observed for four photosynthetic apparatus genes encoding chlorophyll a/b-binding proteins (Lhca4 and Lhcb4) and photosystem I reaction center subunits (subunit K and subunit N), as well as for a gene coding for chloroplast ATP synthase subunit. These results indicate that TaNF-YB3 is involved in the positive regulation of a number of photosynthesis genes in wheat.
Resumo:
Purpose: To examine the relationship between visual impairment and functional status in a community-dwelling sample of older adults with glaucoma. Methods: This study included 74 community-dwelling older adults with open-angle glaucoma (aged 74 ± 6 years). Assessment of central vision included high-contrast visual acuity and Pelli-Robson contrast sensitivity. Binocular integrated visual fields were derived from merged monocular Humphrey Field Analyser visual field plots. Functional status outcome measures included physical performance tests (6-min walk test, timed up and go test and lower limb strength), a physical activity questionnaire (Physical Activity Scale for the Elderly) and an overall functional status score. Correlation and linear regression analyses, adjusting for age and gender, examined the association between visual impairment and functional status outcomes. Results: Greater levels of visual impairment were significantly associated with lower levels of functional status among community-dwelling older adults with glaucoma, independent of age and gender. Specifically, lower levels of visual function were associated with slower timed up and go performance, weaker lower limb strength, lower self-reported physical activity, and lower overall functional status scores. Of the components of vision examined, the inferior visual field and contrast factors were the strongest predictors of these functional outcomes, whereas the superior visual field factor was not related to functional status. Conclusions: Greater visual impairment, particularly in the inferior visual field and loss of contrast sensitivity, was associated with poorer functional status among older adults with glaucoma. The findings of this study highlight the potential links between visual impairment and the onset of functional decline. Interventions which promote physical activity among older adults with glaucoma may assist in preventing functional decline, frailty and falls, and improve overall health and well-being.
Resumo:
In order to tackle the growth of air travelers in airports worldwide, it is important to simulate and understand passenger flows to predict future capacity constraints and levels of service. We discuss the ability of agent-based models to understand complicated pedestrian movement in built environments. In this paper we propose advanced passenger traits to enable more detailed modelling of behaviors in terminal buildings, particularly in the departure hall around the check-in facilities. To demonstrate the concepts, we perform a series of passenger agent simulations in a virtual airport terminal. In doing so, we generate a spatial distribution of passengers within the departure hall to ancillary facilities such as cafes, information kiosks and phone booths as well as common check-in facilities, and observe the effects this has on passenger check-in and departure hall dwell times, and facility utilization.
Resumo:
The function of CUB domain-containing protein 1 (CDCP1), a recently described transmembrane protein expressed on the surface of hematopoietic stem cells and normal and malignant cells of different tissue origin, is not well defined. The contribution of CDCP1 to tumor metastasis was analyzed by using HeLa carcinoma cells overexpressing CDCP1 (HeLa-CDCP1) and a high-disseminating variant of prostate carcinoma PC-3 naturally expressing high levels of CDCP1 (PC3-hi/diss). CDCP1 expression rendered HeLa cells more aggressive in experimental metastasis in immunodeficient mice. Metastatic colonization by HeLa-CDCP1 was effectively inhibited with subtractive immunization-generated, CDCP1-specific monoclonal antibody (mAb) 41-2, suggesting that CDCP1 facilitates relatively late stages of the metastatic cascade. In the chick embryo model, time- and dose-dependent inhibition of HeLa-CDCP1 colonization by mAb 41-2 was analyzed quantitatively to determine when and where CDCP1 functions during metastasis. Quantitative PCR and immunohistochemical analyses indicated that CDCP1 facilitated tumor cell survival soon after vascular arrest. Live cell imaging showed that the function-blocking mechanism of mAb 41-2 involved enhancement of tumor cell apoptosis, confirmed by attenuation of mAb 41-2–mediated effects with the caspase inhibitor z-VAD-fmk. Under proapoptotic conditions in vitro, CDCP1 expression conferred HeLa-CDCP1 cells with resistance to doxorubicin-induced apoptosis, whereas ligation of CDCP1 with mAb 41-2 caused additional enhancement of the apoptotic response. The functional role of naturally expressed CDCP1 was shown by mAb 41-2–mediated inhibition of both experimental and spontaneous metastasis of PC3-hi/diss. These findings confirm that CDCP1 functions as an antiapoptotic molecule and indicate that during metastasis CDCP1 facilitates tumor cell survival likely during or soon after extravasation.