195 resultados para peroxisome proliferator activated receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch receptor-mediated intracellular events represent an ancient cell signaling system, and alterations in Notch expression are associated with various malignancies in which Notch may function as an oncogene or less commonly as a tumor suppressor. Notch signaling regulates cell fate decisions in the epidermis, including influencing stem cell dynamics and growth/differentiation control of cells in skin. Because of increasing evidence that the Notch signaling network is deregulated in human malignancies, Notch receptors have become attractive targets for selective killing of malignant cells. Compared with proliferating normal human melanocytes, melanoma cell lines are characterized by markedly enhanced levels of activated Notch-1 receptor. By using a small molecule gamma-secretase inhibitor (GSI) consisting of a tripeptide aldehyde, N-benzyloxycarbonyl-Leu-Leu-Nle-CHO, which can block processing and activation of all four different Notch receptors, we identified a specific apoptotic vulnerability in melanoma cells. GSI triggers apoptosis in melanoma cells, but only G2/M growth arrest in melanocytes without subsequent cell death. Moreover, GSI treatment induced a pro-apoptotic BH3-only protein, NOXA, in melanoma cells but not in normal melanocytes. The use of GSI to induce NOXA induction overcomes the apoptotic resistance of melanoma cells, which commonly express numerous cell survival proteins such as Mcl-1, Bcl-2, and survivin. Taken together, these results highlight the concept of synthetic lethality in which exposure to GSI, in combination with melanoma cells overexpressing activated Notch receptors, has lethal consequences, producing selective killing of melanoma cells, while sparing normal melanocytes. By identifying signaling pathways that contribute to the transformation of melanoma cells (e.g. Notch signaling), and anti-cancer agents that achieve tumor selectivity (e.g., GSI-induced NOXA), this experimental approach provides a useful framework for future therapeutic strategies in cutaneous oncology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, an analysis of the response curve of the vascular endothelial growth factor (VEGF) receptor and its application to cancer therapy was described in [T. Alarcón, and K. Page, J. R. Soc. Lond. Interface 4, 283–304 (2007)]. The analysis is significantly extended here by demonstrating that an alternative computational strategy, namely the Krylov FSP algorithm for the direct solution of the chemical master equation, is feasible for the study of the receptor model. The new method allows us to further investigate the hypothesis of symmetry in the stochastic fluctuations of the response. Also, by augmenting the original model with a single reversible reaction we formulate a plausible mechanism capable of realizing a bimodal response, which is reported experimentally but which is not exhibited by the original model. The significance of these findings for mechanisms of tumour resistance to antiangiogenic therapy is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transglutaminases are confounding enzymes which are known to play key roles in various cellular processes. In this paper, we aim to bring together several pieces of evidence from published research and literature that suggest a potentially vital role for transglutaminases in receptor tyrosine kinases (RTK) signalling. We cite literature that confirms and suggests the formation of integrin:RTK:transglutaminase complexes and explores the occurrence and functionality of these complexes in a large fraction of the RTK family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The most common functional single nucleotide polymorphism of the human OPRM1 gene, A118G, has been shown to be associated with interindividual differences in opioid analgesic requirements, particularly with morphine, in patients with acute postoperative pain. The purpose of this study was to examine whether this polymorphism would modulate the morphine and fentanyl pharmacological profile of sensory neurons isolated from a humanized mouse model homozygous for either the 118A or 118G allele. Methods: The coupling of wild-type and mutant μ opioid receptors to voltage-gated Ca channels after exposure to either ligand was examined by employing the whole cell variant of the patch-clamp technique in acutely dissociated trigeminal ganglion neurons. Morphine-mediated antinociception was measured in mice carrying either the 118AA or 118GG allele. RESULTS:: The biophysical parameters (cell size, current density, and peak current amplitude potential) measured from both groups of sensory neurons were not significantly different. In 118GG neurons, morphine was approximately fivefold less potent and 26% less efficacious than that observed in 118AA neurons. On the other hand, the potency and efficacy of fentanyl were similar for both groups of neurons. Morphine-mediated analgesia in 118GG mice was significantly reduced compared with the 118AA mice. Conclusions: This study provides evidence to suggest that the diminished clinical effect observed with morphine in 118G carriers results from an alteration of the receptor's pharmacology in sensory neurons. In addition, the impaired analgesic response with morphine may explain why carriers of this receptor variant have an increased susceptibility to become addicted to opioids. © 2011 the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins. Anesthesiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The EphB4 receptor tyrosine kinase has been reported as increased in tumours originating from several different tissues and its expression in a prostate cancer xenograft model has been reported. Methods: RT-PCR, western blotting and immunohistochemical techniques were used to examine EphB4 expression and protein levels in human prostate cancer cell lines LNCaP, DU145 and PC3. Immunohistochemistry was also used to examine localisation of EphB4 in tissue samples from 15 patients with prostate carcinomas. Results: All three prostate cancer cell lines expressed the EphB4 gene and protein. EphB4 immunoreactivity in vivo was significantly greater in human prostate cancers as compared with matched normal prostate epithelium and there appeared to be a trend towards increased expression with higher grade disease. Conclusions: EphB4 is expressed in prostate cancer cell lines with increased expression in human prostate cancers when compared with matched normal tissue. EphB4 may therefore be a useful anti-prostate cancer target. © 2005 Lee et al., licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed cancer in males in Australia, North America, and Europe. If found early and locally confined, CaP can be treated with radical prostatectomy or radiation therapy; however, 25-40% patients will relapse and go on to advanced disease. The most common therapy in these cases is androgen deprivation therapy (ADT), which suppresses androgen production from the testis. Lack of the testicular androgen supply causes cells of the prostate to undergo apoptosis. However, in some cases the regression initially seen with ADT eventually gives way to a growth of a population of cancerous cells that no longer require testicular androgens. This phenotype is essentially fatal and is termed castrate resistant prostate cancer (CRPC). In addition to eventual regression, there are many undesirable side effects which accompany ADT, including development of a metabolic syndrome, which is defined by the U.S. National Library of Medicine as “a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes.” This project will focus on the effect of ADT induced hyperinsulinemia, as mimicked by treating androgen receptor positive CaP cells with insulin in a serum (hormone) deprived environment. While this side effect is not widely explored, in this thesis it is demonstrated for the first time that insulin upregulates pathways important to CaP progression. Our group has previously shown that during CaP progression, the enzymes necessary for de novo steroidogenesis are upregulated in the LNCaP xenograft model, total steroid levels are increased in tumours compared to pre castrate levels, and de novo steroidogenesis from radio-labelled acetate has been demonstrated. Because of the CaP dependence on AR for survival, we and other groups believe that CaP cells carry out de novo steroidogenesis to survive in androgen deprived conditions. Because (a) men on ADT often develop metabolic syndrome, and (b) men with lifestyle-induced obesity and hyperinsulinemia have worse prognosis and faster disease progression, and because (c) insulin causes steroidogenesis in other cell lines, the hypothesis that insulin may contribute to CaP progression through upregulation of steroidogenesis was explored. Insulin upregulates steroidogenesis enzymes at the mRNA level in three AR positive cell lines, as well as upregulating these enzymes at the protein level in two cell lines. It has also been demonstrated that insulin increases mitochondrial (functional) levels of steroid acute regulatory protein (StAR). Furthermore, insulin causes increased levels of total steroids in and induction of de novo steroid synthesis by insulin has been demonstrated at levels induced sufficient to activate AR. The effect of insulin analogs on CaP steroidogenesis in LNCaP and VCaP cells has also been investigated because epidemiological studies suggest that some of the analogs developed may have more cancer stimulatory effects than normal insulin. In this project, despite the signalling differences between glargine, X10, and insulin, these analogs did not appear to induce steroidogenesis any more potently that normal insulin. The effect of insulin of MCF7breast cancer cells was also investigated with results suggesting that breast cancer cells may be capable of de novo steroidogenesis, and that increase in estradiol production may be exacerbated by insulin. Insulin has also been long known to stimulate lipogenesis in the liver and adipocytes, and has been demonstrated to increase lipogenesis in breast cancer cells; therefore, investigation of the effect of insulin on lipogenesis, which is a hallmark of aggressive cancers, was investigated. In CaP progression sterol regulatory element binding protein (SREBP) is dysregulated and upregulates fatty acid synthase (FASN), acetyl CoA-carboxylase, and other lipogenesis genes. SREBP is important for steroidogenesis and in this project has been shown to be upregulated by insulin in CaP cells. Fatty acid synthesis provides building blocks of membrane growth, provides substrates for acid oxidation, the main energy source for CaP cells, provides building blocks for anti-apoptotic and proinflammatory molecules, and provides molecules that stimulate steroidogenesis. In this project it has been shown that insulin upregulates FASN and ACC, which synthesize fatty acids, as well as upregulating hormone sensitive lipase (HSL), diazepam-binding inhibitor (DBI), and long-chain acyl-CoA synthetase 3 (ACSL3), which contribute to lipid activation of steroidogenesis. Insulin also upregulates total lipid levels and de novo lipogenesis, which can be suppressed by inhibition of the insulin receptor (INSR). The fatty acids synthesized after insulin treatment are those that have been associated with CaP; furthermore, microarray data suggests insulin may upregulate fatty acid biosynthesis, metabolism and arachidonic acid metabolism pathways, which have been implicated in CaP growth and survival. Pharmacological agents used to treat patients with hyperinsulinemia/ hyperlipidemia have gained much interest in regards to CaP risk and treatment; however, the scientific rationale behind these clinical applications has not been examined. This thesis explores whether the use of metformin or simvastatin would decrease either lipogenesis or steroidogenesis or both in CaP cells. Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitor, which blocks synthesis of cholesterol, the building block of steroids/ androgens. It has also been postulated to down regulate SREBP in other metabolic disorders. It has been shown in this thesis, in LNCaP cells, that simvastatin inhibited and decreased insulin induced steroidogenesis and lipogenesis, respectively, but increased these pathways in the absence of insulin. Conversely, metformin, which activates AMP-activated protein kinase (AMPK) to shut down lipogenesis, cholesterol synthesis, and protein synthesis, highly suppresses both steroidogenesis and lipogenesis in the presence and absence of insulin. Lastly, because it has been demonstrated to increase steroidogenesis in other cell lines, and because the elucidation of any factors affecting steroidogenesis is important to understanding CaP, the effect of IGF2 on steroidogenesis in CaP cells was investigated. In patient samples, as men progress to CRPC, IGF2 mRNA and the protein levels of the receptors it may signal through are upregulated. It has also been demonstrated that IGF2 upregulates steroidogenic enzymes at both the mRNA and protein levels in LNCaP cells, increases intracellular and secreted steroid/androgen levels in LNCaPs to levels sufficient to stimulate the AR, and upregulated de novo steroidogenesis in LNCaPs and VCaPs. As well, inhibition of INSR and insulin-like growth factor 1 receptor (IGF1R), which IGF2 signals through, suggests that induction of steroidogenesis may be occurring predominantly through IGF1R. In summary, this project has illuminated for the first time that insulin is likely to play a large role in cancer progression, through upregulation of the steroidogenesis and lipogenesis pathways at the mRNA and protein levels, and production levels, and demonstrates a novel role for IGF-II in CaP progression through stimulation of steroidogenesis. It has also been demonstrated that metformin and simvastatin drugs may be useful in suppressing the insulin induction of these pathways. This project affirms the pathways by which ADT- induced metabolic syndrome may exacerbate CaP progression and strongly suggests that the monitoring and modulation of the metabolic state of CaP patients could have a strong impact on their therapeutic outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharide-activated macrophages rapidly synthesize and secrete tumor necrosis factor α (TNFα) to prime the immune system. Surface delivery of membrane carrying newly synthesized TNFα is controlled and limited by the level of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin 4 and SNAP-23. Many functions in immune cells are coordinated from lipid rafts in the plasmamembrane, and we investigated a possible role for lipid rafts in TNFα trafficking and secretion. TNFα surface delivery and secretion were found to be cholesterol- dependent. Upon macrophage activation, syntaxin 4 was recruited to cholesterol-dependent lipid rafts, whereas its regulatory protein, Munc18c, was excluded from the rafts. Syntaxin 4 in activated macrophages localized to discrete cholesterol-dependent puncta on the plasmamembrane, particularly on filopodia. Imaging the early stages of TNFα surface distribution revealed these puncta to be the initial points of TNFα delivery. During the early stages of phagocytosis, syntaxin 4 was recruited to the phagocytic cup in a cholesterol dependent manner. Insertion of VAMP3-positive recycling endosome membrane is required for efficient ingestion of a pathogen. Without this recruitment of syntaxin 4, it is not incorporated into the plasma membrane, and phagocytosis is greatly reduced. Thus, relocation of syntaxin 4 into lipid rafts in macrophages is a critical and rate-limiting step in initiating an effective immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key function of activated macrophages is to secrete proinflammatory cytokines such as TNF; however, the intracellular pathway and machinery responsible for cytokine trafficking and secretion is largely undefined. Here we show that individual SNARE proteins involved in vesicle docking and fusion are regulated at both gene and protein expression upon stimulation with the bacterial cell wall component lipopolysaccharide. Focusing on two intracellular SNARE proteins, Vti1b and syntaxin 6 (Stx6), we show that they are up-regulated in conjunction with increasing cytokine secretion in activated macrophages and that their levels are selectively titrated to accommodate the volume and timing of post-Golgi cytokine trafficking. In macrophages, Vti1b and syntaxin 6 are localized on intracellular membranes and are present on isolated Golgi membranes and on Golgi-derived TNF� vesicles budded in vitro. By immunoprecipitation, we find that Vti1b and syntaxin 6 interact to form a novel intracellular Q-SNARE complex. Functional studies using overexpression of full-length and truncated proteins show that both Vti1b and syntaxin 6 function and have rate-limiting roles in TNF� trafficking and secretion. This study shows how macrophages have uniquely adapted a novel Golgi-associated SNARE complex to accommodate their requirement for increased cytokine secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flightless (Flii) is upregulated in response to wounding and has been shown to function in wound closure and scarring. In macrophages intracellular Flii negatively modulates TLR signalling and dampens cytokine production. We now show that Flii is constitutively secreted from macrophages and fibroblasts and is present in human plasma. Secretion from fibroblasts is upregulated in response to scratch wounding and LPS-activated macrophages also temporally upregulate their secretion of Flii. Using siRNA, wild-type and mutant proteins we show that Flii is secreted via a late endosomal/lysosomal pathway that is regulated by Rab7 and Stx11. Flii contains 11 leucine rich repeat (LRR) domains in its N-terminus that have nearly 50% similarity to those in the extracellular pathogen binding portion of Toll-like receptor 4 (TLR4). We show secreted Flii can also bind LPS and has the ability to alter macrophage activation. LPS activation of macrophages in Flii depleted conditioned media leads to enhanced macrophage activation and increased TNF secretion compared to cells activated in the presence of Flii. These results show secreted Flii binds to LPS and in doing so alters macrophage activation and cytokine secretion, suggesting that like the intracellular pool of Flii, secreted Flii also has the ability to alter inflammation.

Relevância:

20.00% 20.00%

Publicador: