210 resultados para parent–child relationships
Resumo:
Studies show that in 3-11 year-olds, parental feeding style is directly associated with child weight [1] and also moderates the association between feeding practices and weight [2]. This cross-sectional study aimed to examine these relationships in younger children. Data from 331 of 698 first-time mothers of healthy term children (151 boys, mean age 24±1 months) enrolled in the NOURISH RCT included (a) measured child weight, (b) self-reported feeding styles and controlling feeding practices, and (c) maternal and child covariates. ANCOVA compared mean child weight-for-age z-score (cWAZ) across 4 feeding styles. Regression examined the associations between cWAZ and 5 controlling feeding practices. Moderated multiple regression analysis was planned to examine effects of feeding style on relationships between feeding practices and cWAZ. Feeding style (indulgent = 38.6%, authoritarian = 35.8%, authoritative = 13.1%, uninvolved = 12.5%) was not independently associated with cWAZ. However, ’pressure to eat’ was negatively associated with cWAZ (�=-0.131, p<0.05) higher pressure associated with lower cWAZ. Given feeding style was not associated with cWAZ, moderation analysis was not performed. Contrary to findings in older children, cWAZ in 2-year-olds was not associated with maternal feeding style. However, the negative association between child weight and pressure feeding found in 6-11year-olds [2] appears to hold in toddlers. Educating mothers about potentially detrimental long-term effects of pressure feeding in early childhood, may be more practical and effective in promoting healthy weight than targeting the less concrete concept of feeding styles. References: [1] Hughes, Appetite, 2005;44:83-92. [2] Hennessy, Appetite, 2010;54:369-377.
Resumo:
Research over the last two decades has significantly increased our understanding of the evolutionary position of the insects among other arthropods, and the relationships among the insect Orders. Many of these insights have been established through increasingly sophisticated analyses of DNA sequence data from a limited number of genes. Recent results have established the relationships of the Holometabola, but relationships among the hemimetabolous orders have been more difficult to elucidate. A strong consensus on the relationships among the Palaeoptera (Ephemeroptera and Odonata) and their relationship to the Neoptera has not emerged with all three possible resolutions supported by different data sets. While polyneopteran relationships generally have resisted significant resolution, it is now clear that termites, Isoptera, are nested within the cockroaches, Blattodea. The newly discovered order Mantophasmatodea is difficult to place with the balance of studies favouring Grylloblattodea as sister-group. While some studies have found the paraneopteran orders (Hemiptera, Thysanoptera, Phthiraptera and Psocoptera) monophyletic, evidence suggests that parasitic lice (Phthiraptera) have evolved from groups within the book and bark lice (Psocoptera), and may represent parallel evolutions of parasitism within two major louse groups. Within Holometabola, it is now clear that Hymenoptera are the sister to the other orders, that, in turn are divided into two clades, the Neuropteroidea (Coleoptera, Neuroptera and relatives) and the Mecopterida (Trichoptera, Lepidoptera, Diptera and their relatives). The enigmatic order Strepsiptera, the twisted wing insects, have now been placed firmly near Coleoptera, rejecting their close relationship to Diptera that was proposed some 15years ago primarily based on ribosomal DNA data. Phylogenomic-scale analyses are just beginning to be focused on the relationships of the insect orders, and this is where we expect to see resolution of palaeopteran and polyneopteran relationships. Future research will benefit from greater coordination between intra and inter-ordinal analyses. This will maximise the opportunities for appropriate outgroup choice at the intraordinal level and provide the background knowledge for the interordinal analyses to span the maximum phylogenetic scope within groups.
Resumo:
In this study, we investigate the relationship between tree species diversity and production in 18 mixed-species plantations established under the Rainforestation Farming system in Leyte province, the Philippines. The aim was to quantify productivity in the mixed-species plantations in comparison to the monocultures, and identify key drivers of productivity including environmental conditions, stand structural characteristics and surrogate measures of biodiversity, i.e. species richness, Shannon’s diversity index and functional groups. We found that monocultures had a much higher productivity than mixtures of the same and other species. In the mixtures, biodiversity and productivity did not have a simple relationship. Instead the proportion of exotic and native species, and the proportion of fast-growing species had a marginally significant positive effect on stand productivity, but no significant relationship was found with species richness or Shannon’s diversity. Instead stand structural characteristics such as density and age were the strongest drivers of increased productivity. Production levels within the mixed-species plantations varied significantly between sites. Overall, we found that the productivity of mixed species plantations was driven more by the characteristics of species present and stand structural characteristics then by simply the number and abundance of species, which suggests management practices are key for balancing multiple objectives to meet sustainable development needs.
Resumo:
A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.