105 resultados para nanometric coatings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic thin films have myriad of applications in biological interfaces, micro-electromechanical systems and organic electronics. Polyterpenol thin films fabricated via RF plasma polymerization have been substantiated as a promising gate insulating and encapsulating layer for organic optoelectronics, sacrificial place-holders for air gap fabrication as well as antibacterial coatings for medical implants. This study aims to understand the wettability and solubility behavior of the nonsynthetic polymer thin film, polyterpenol. Polyterpenol exhibited monopolar behavior, manifesting mostly electron donor properties, and was not water soluble due to the extensive intermolecular and intramolecular hydrogen bonds present. Hydrophobicity of polyterpenol surfaces increased for films fabricated at higher RF power attributed to reduction in oxygen containing functional groups and increased cross linking. The studies carried out under various deposition conditions vindicate that we could tailor the properties of the polyterpenol thin film for a given application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of novel organic polymer thin films is essential for the advancement of many emerging fields including organic electronics and biomedical coatings. In this study, the effect of synthesis conditions, namely radio frequency (rf) deposition power, on the material properties of polyterpenol thin films derived from nonsynthetic environmentally friendly monomer was investigated. At lower deposition powers, the polyterpenol films preserved more of the original monomer constituents, such as hydroxy functional groups; however, they were also softer and more hydrophilic compared to polymers fabricated at higher power. Enhanced monomer fragmentation and consequent reduction in the presence of the polar groups in the structure of the high-power samples reduced their optical band gap value from 2.95 eV for 10 W to 2.64 eV for 100 W. Regardless of deposition power, all samples were found to be optically transparent with smooth, defect-free, and homogenous surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanometer scale surface topography of a solid substrate is known to influence the extent of bacterial attachment and their subsequent proliferation to form biofilms. As an extension of our previous work on the development of a novel organic polymer coating for the prevention of growth of medically significant bacteria on three-dimensional solid surfaces, this study examines the effect of surface coating on the adhesion and proliferation tendencies of Staphylococcus aureus and compares to those previously investigated tendencies of Pseudomonas aeruginosa on similar coatings. Radio frequency plasma enhanced chemical vapor deposition was used to coat the surface of the substrate with thin film of terpinen-4-ol, a constituent of tea-tree oil known to inhibit the growth of a broad range of bacteria. The presence of the coating decreased the substrate surface roughness from approximately 2.1 nm to 0.4 nm. Similar to P. aeruginosa, S. aureus presented notably different patterns of attachment in response to the presence of the surface film, where the amount of attachment, extracellular polymeric substance production, and cell proliferation on the coated surface was found to be greatly reduced compared to that obtained on the unmodified surface. This work suggests that the antimicrobial and antifouling coating used in this study could be effectively integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic plasma polymers are currently attracting significant interest for their potential in the areas of flexible optoelectronics and biotechnology. Thin films of plasma-polymerized polyterpenol fabricated under varied deposition conditions were studied using nanoindentation and nanoscratch analyses. Coatings fabricated at higher deposition power were characterized by improved hardness, from 0.33 GPa for 10 W to 0.51 GPa for 100 W at 500-μN load, and enhanced wear resistance. The elastic recovery was estimated to be between 0.1 and 0.14. Coatings deposited at higher RF powers also showed less mechanical deformation and improved quality of adhesion. The average (R a) and root mean square (R q) surface roughness parameters decreased, from 0.44 nm and 0.56 nm for 10 W to 0.33 nm and 0.42 nm for 100 W, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma polymerisation was used to deposit thin oligomeric films of terpinen-4-ol on a range of substrates. The coatings were examined in terms of their chemical properties and surface architecture to ascertain the changes in chemical composition as a result of exposure to the plasma field. The antifouling and antimicrobial activity of oligomeric terpinen-4-ol coatings were then examined against such human pathogens as Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermis. The bacterial adhesion patterns were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This RIRDC publication reports the findings and recommendations of the RIRDC funded study, "Fabrication of Electronic Materials from Australian Essential Oils". This project was undertaken to facilitate an expansion of the Australian Essential Oils Industry through the development of novel applications in the Electronic and Bio-Materials Industries. The findings presented in this report will provide value broadly across the Australian Essential Oils Industry, and more particularly to the growers involved in the production of tea tree, lavender and other essential oils. Several essential oils, namely tea tree oil, sandalwood oil, eucalyptus oil, alpha-pinene, d-limonene, lavender oil (a separate PhD project) and five major components of tea tree oil were tested. With the exception of sandalwood oil, all oils investigated were successfully polymerised. Importantly, this project determined that it is possible to use an environmentally friendly, inexpensive process of polymerisation to fabricate materials from essential oils in a reproducible manner with properties required by the optics, electronics, protective coatings, and bio-material industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amongst various methods to attain sound antibacterial and antifouling properties, surface modification of biomaterials combines efficiency, processing flexibility, and most importantly, the ability to preserve favourable bulk properties, such as mechanical strength and chemical inertness. This chapter will first briefly discuss key parameters by which the biomaterial surface can be described, namely surface chemistry and morphology, and their individual and combined contributions to cell-surface interactions. More emphasis will be placed on surface morphology as the area of much debate. The chapter will then describe a range of available methodologies for surface modification, with plasma-assisted modification as one of the foci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scales provide optical disguise, low water drag and mechanical protection to fish, enabling them to survive catastrophic environmental disasters, predators and microorganisms. The unique structures and stacking sequences of fish scales inspired the fabrication of artificial nanostructures with salient optical, interfacial and mechanical properties. Herein, we describe fish-scale bio-inspired multifunctional ZnO nanostructures that have similar morphology and structure to the cycloid scales of the Asian Arowana. These nanostructured coatings feature tunable light refraction and reflection, modulated surface wettability and damage-tolerant mechanical properties. The salient properties of these multifunctional nanostructures are promising for applications in: - (i) optical coatings, sensing or lens arrays for use in reflective displays, packing, advertising and solar energy harvesting; - (ii) self-cleaning surfaces, including anti-smudge, anti-fouling and anti-fogging, and self-sterilizing surfaces, and; - (iii) mechanical/chemical barrier coatings. This study provides a low-cost and large-scale production method for the facile fabrication of these bio-inspired nanostructures and provides new insights for the development of novel functional materials for use in 'smart' structures and applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reticulated porous Ti3AlC2 ceramic, a member of the MAX-phase family (Mn+1AXn phases, where M is an early transition metal, A is an A-group element, and X is carbon and/or nitrogen), was prepared from the highly dispersed aqueous suspension by a replica template method. Through a cathodic electrogeneration method, nanocrystalline catalytic CeO2 coatings were deposited on the conductive porous Ti 3AlC2 supports. By adjusting the pH value and cathodic deposition current, coatings exhibiting nanocellar, nanosheets-like, or bubble-free morphologies can be obtained. This work expects to introduce a novel practically feasible material system and a catalytic coating preparation technique for gas exhaust catalyst devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Y2SiO5 is a promising candidate for oxidation-resistant or environmental/thermal barrier coatings (ETBC) due to its excellent high-temperature stability, low elastic modulus and low oxygen permeability. In this paper, we investigated the thermal properties of Y2SiO5 comprehensively, including thermal expansion, thermal diffusivity, heat capacity and thermal conductivity. It is interesting that Y2SiO5 has a very low thermal conductivity (∼1.40 W/m K) but a relatively high linear thermal expansion coefficient ((8.36 ± 0.5) × 10-6 K-1), suggesting compatible thermal and mechanical properties to some non-oxide ceramics and nickel superalloys as ETBC layer. Y2SiO5 is also an ideal EBC on YSZ TBC layer due to their close thermal expansion coefficients. As a continuous source of Y3+, it is predicted that Y2SiO5 EBC may prolong the lifetime of zirconia-based TBC by stopping the degradation aroused by the loss of Y stabilizer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal properties, namely, Debye temperature, thermal expansion coefficient, heat capacity, and thermal conductivity of γ-Y 2Si2O7, a high-temperature polymorph of yttrium disilicate, were investigated. The anisotropic thermal expansions of γ-Y2Si2O7 powders were examined using high-temperature X-ray diffractometer from 300 to 1373 K and the volumetric thermal expansion coefficient is (6.68±0.35) × 10-6 K-1. The linear thermal expansion coefficient of polycrystalline γ-Y2Si2O7 determined by push-rod dilatometer is (3.90±0.4) × 10-6 K-1, being very close to that of silicon nitride and silicon carbide. Besides, γ-Y2Si2O7 displays a low-thermal conductivity, with a κ value measured below 3.0 W·(m·K) -1 at the temperatures above 600 K. The calculated minimum thermal conductivity, κmin, was 1.35 W·(m·K) -1. The unique combination of low thermal expansion coefficient and low-thermal conductivity of γ-Y2Si2O7 renders it a very competitive candidate material for high temperature structural components and environmental/thermal-barrier coatings. The thermal shock resistance of γ-Y2Si2O7 was estimated by quenching dense materials in water from various temperatures and the critical temperature difference, ΔTc, was determined to be 300 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

γ-Y2Si2O7 is a promising candidate both for high temperature structural applications and as thermal barrier coatings due to its unique combination of properties, such as high melting point, good machinability, high thermal stability, low linear thermal expansion coefficient (3.9 × 10-6 K-1, 25-1400 °C) and low thermal conductivity (<3 W/m K above 300 °C). In this work, the hot corrosion behavior of γ-Y2Si2O7 in strongly basic Na2CO3 molten salt at 850-1000 °C for 20 h in flowing air was investigated. In the employed conditions, multi-layer corrosion scales with total thickness less than 90 μm were formed. At 850-900 °C, the outmost layer of the scale was composed of the reprecipitation of Y2O3, the bottom of a Si-rich Na2O·xSiO2 (x > 3.65) melt layer, and the middle of a NaYSiO4 layer. At 1000 °C, the corrosion products turned out to be a mixture of NaY9Si6O26 and Si-rich Na2O·xSiO2 (x > 3.65). In all cases, a thin layer of protective SiO2 formed under the Na2O·xSiO2 melt and protected the bulk material from further corrosion.