113 resultados para monitoring of species
Resumo:
Understanding the evolutionary history and phylogenetic relationships between rare and common species is necessary for the effective management of rare species. The genus Cherax, a group of freshwater crayfish species, is of interest in this regard as a number of species are rare or have restricted distributions while other species are common and widespread. Here we describe the characterisation of three novel nuclear genes of the haemocyanin superfamily for phylogenetic reconstruction of the genus. All novel markers developed in this study amplified consistently in species from three divergent clades of the genus Cherax. The level of polymorphism found in these markers was consistently higher than that found in other nuclear genes previously used in invertebrate systematics, such as NaK ATP-ase. In combination, these markers will be useful to delineate phylogenetic relationships between rare and common Cherax species.
Resumo:
Airborne particles have been shown to be associated with a wide range of adverse health effects, which has led to a recent increase in medical research to gain better insight into their health effects. However, accurate evaluation of the exposure-dose-response relationship is highly dependent on the ability to track actual exposure levels of people to airborne particles. This is quite a complex task, particularly in relation to submicrometer and ultrafine particles, which can vary quite significantly in terms of particle surface area and number concentrations. Therefore, suitable monitors that can be worn for measuring personal exposure to these particles are needed. This paper presents an evaluation of the metrological performance of six diffusion charger sensors, NanoTracer (Philips Aerasense) monitors, when measuring particle number and surface area concentrations, as well as particle number distribution mean when compared to reference instruments. Tests in the laboratory (by generating monodisperse and polydisperse aerosols) and in the field (using natural ambient particles) were designed to evaluate the response of these devices under both steady-state and dynamics conditions. Results showed that the NanoTracers performed well when measuring steady state aerosols, however they strongly underestimated actual concentrations during dynamic response testing. The field experiments also showed that, when the majority of the particles were smaller than 20 nm, which occurs during particle formation events in the atmosphere, the NanoTracer underestimated number concentration quite significantly. Even though the NanoTracer can be used for personal monitoring of exposure to ultrafine particles, it also has limitations which need to be considered in order to provide meaningful results.
Resumo:
Acoustic sensors can be used to estimate species richness for vocal species such as birds. They can continuously and passively record large volumes of data over extended periods. These data must subsequently be analyzed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced surveyors can produce accurate results; however the time and effort required to process even small volumes of data can make manual analysis prohibitive. This study examined the use of sampling methods to reduce the cost of analyzing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilizing five days of manually analyzed acoustic sensor data from four sites, we examined a range of sampling frequencies and methods including random, stratified, and biologically informed. We found that randomly selecting 120 one-minute samples from the three hours immediately following dawn over five days of recordings, detected the highest number of species. On average, this method detected 62% of total species from 120 one-minute samples, compared to 34% of total species detected from traditional area search methods. Our results demonstrate that targeted sampling methods can provide an effective means for analyzing large volumes of acoustic sensor data efficiently and accurately. Development of automated and semi-automated techniques is required to assist in analyzing large volumes of acoustic sensor data. Read More: http://www.esajournals.org/doi/abs/10.1890/12-2088.1
Resumo:
Food prices and food affordability are important determinants of food choices, obesity and non-communicable diseases. As governments around the world consider policies to promote the consumption of healthier foods, data on the relative price and affordability of foods, with a particular focus on the difference between ‘less healthy’ and ‘healthy’ foods and diets, are urgently needed. This paper briefly reviews past and current approaches to monitoring food prices, and identifies key issues affecting the development of practical tools and methods for food price data collection, analysis and reporting. A step-wise monitoring framework, including measurement indicators, is proposed. ‘Minimal’ data collection will assess the differential price of ‘healthy’ and ‘less healthy’ foods; ‘expanded’ monitoring will assess the differential price of ‘healthy’ and ‘less healthy’ diets; and the ‘optimal’ approach will also monitor food affordability, by taking into account household income. The monitoring of the price and affordability of ‘healthy’ and ‘less healthy’ foods and diets globally will provide robust data and benchmarks to inform economic and fiscal policy responses. Given the range of methodological, cultural and logistical challenges in this area, it is imperative that all aspects of the proposed monitoring framework are tested rigorously before implementation.
Resumo:
The liberalization of international trade and foreign direct investment through multilateral, regional and bilateral agreements has had profound implications for the structure and nature of food systems, and therefore, for the availability, nutritional quality, accessibility, price and promotion of foods in different locations. Public health attention has only relatively recently turned to the links between trade and investment agreements, diets and health, and there is currently no systematic monitoring of this area. This paper reviews the available evidence on the links between trade agreements, food environments and diets from an obesity and non-communicable disease (NCD) perspective. Based on the key issues identified through the review, the paper outlines an approach for monitoring the potential impact of trade agreements on food environments and obesity/NCD risks. The proposed monitoring approach encompasses a set of guiding principles, recommended procedures for data collection and analysis, and quantifiable ‘minimal’, ‘expanded’ and ‘optimal’ measurement indicators to be tailored to national priorities, capacity and resources. Formal risk assessment processes of existing and evolving trade and investment agreements, which focus on their impacts on food environments will help inform the development of healthy trade policy, strengthen domestic nutrition and health policy space and ultimately protect population nutrition.
Resumo:
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.
Resumo:
High-resolution, high-contrast, three-dimensional images of live cell and tissue architecture can be obtained using second harmonic generation (SHG), which comprises non-absorptive frequency changes in an excitation laser line. SHG does not require any exogenous antibody or fluorophore labeling, and can generate images from unstained sections of several key endogenous biomolecules, in a wide variety of species and from different types of processed tissue. Here, we examined normal control human skin sections and human burn scar tissues using SHG on a multi-photon microscope (MPM). Examination and comparison of normal human skin and burn scar tissue demonstrated a clear arrangement of fibers in the dermis, similar to dermal collagen fiber signals. Fluorescence-staining confirmed the MPM-SHG collagen colocalization with antibody staining for dermal collagen type-I but not fibronectin or elastin. Furthermore, we were able to detect collagen MPM-SHG signal in human frozen sections as well as in unstained paraffin embedded tissue sections that were then compared with hematoxylin and eosin staining in the identical sections. This same approach was also successful in localizing collagen in porcine and ovine skin samples, and may be particularly important when species-specific antibodies may not be available. Collectively, our results demonstrate that MPM SHG-detection is a useful tool for high resolution examination of collagen architecture in both normal and wounded human, porcine and ovine dermal tissue.
Resumo:
Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.
Resumo:
Occupational standards concerning allowable concentrations of chemical compounds in the ambient air of workplaces have been established in several countries worldwide. With the integration of the European Union (EU), there has been a need of establishing harmonised Occupational Exposure Limits (OEL). The European Commission Directive 95/320/EC of 12 July 1995 has given the tasks to a Scientific Committee for Occupational Exposure Limits (SCOEL) to propose, based on scientific data and where appropriate, occupational limit values which may include the 8-h time-weighted average (TWA), short-term limits/excursion limits (STEL) and Biological Limit Values (BLVs). In 2000, the European Union issued a list of 62 chemical substances with Occupational Exposure Limits. Of these, 25 substances received a "skin" notation, indicating that toxicologically significant amounts may be taken up via the skin. For such substances, monitoring of concentrations in ambient air may not be sufficient, and biological monitoring strategies appear of potential importance in the medical surveillance of exposed workers. Recent progress has been made with respect to formulation of a strategy related to health-based BLVs.
Resumo:
The successful establishment and growth of mixed-species forest plantations requires that complementary or facilitatory species be identified. This can be difficult in many tropical areas because the growth characteristics of endemic species are often unknown, particularly when grown at potentially higher densities in plantations than in natural forests. Here, we investigate whether wood density is a useful and readily accessible trait for choosing complementary species for mixed species plantations. Wood density represents the carbon investment per unit volume of stem with a trade-off generally found between fast (low wood density) and slow (high wood density) growing species. To do this, we use data collected from 18 highly diverse mixed species plantations (4–23 mostly native species) aged from 6 to 11 years at the time of data collection located on Leyte Island, Philippines. We found significant negative correlations between wood densities and the height of the most abundant species, as well as with measures of overall stand growth and tree diameter size distribution. Not only do species with denser woods have slower growth rates, but also mixed-species plantations with higher average wood density and higher stem density were also less productive, at least in these young plantations. Similarly, stands with a high diversity in wood densities were less productive. There is growing interest in making greater use of native multi-species mixtures in smallholder and community planting programs in the tropics, and our results show databases of wood density values may help improve their design. In the early development stages of plantations, canopy closure and rapid height growth are usually key silvicultural targets, and wood density values can predict the rapid height development of species. If plantations are being grown for the livelihood of small landholders then the best target is to choose some species with different wood densities. This allows an early harvest of low-wood density species for early income, and will also reduce competition for slower growing trees with higher wood densities for later income generation.
Resumo:
It is well established that the traditional taxonomy and nomenclature of Chironomidae relies on adult males whose usually characteristic genitalia provide evidence of species distinction. In the early days some names were based on female adults of variable distinctiveness – but females are difficult to identify (Ekrem et al. 2010) and many of these names remain dubious. In Russia especially, a system based on larval morphology grew in parallel to the conventional adult-based system. The systems became reconciled with the studies that underlay the production of the Holarctic generic keys to Chironomidae, commencing notably with the larval volume (Wiederholm, 1983). Ever since Thienemann’s pioneering studies, it has been evident that the pupa, notably the cast skins (exuviae) provide a wealth of features that can aid in identification (e.g. Wiederholm, 1986). Furthermore, the pupae can be readily associated with name-bearing adults when a pharate (‘cloaked’) adult stage is visible within the pupa. Association of larvae with the name-bearing later stages has been much more difficult, time-consuming and fraught with risk of failure. Yet it is identification of the larval stage that is needed by most applied researchers due to the value of the immature stages of the family in aquatic monitoring for water quality, although the pupal stage also has advocates (reviewed by Sinclair & Gresens, 2008). Few use the adult stage for such purposes as their provenance and association with the water body can be verified only by emergence trapping, and sampling of adults lies outside regular aquatic monitoring protocols.
Resumo:
Repeatable and accurate seagrass mapping is required for understanding seagrass ecology and supporting management decisions. For shallow (< 5 m) seagrass habitats, these maps can be created by integrating high spatial resolution imagery with field survey data. Field survey data for seagrass is often collected via snorkelling or diving. However, these methods are limited by environmental and safety considerations. Autonomous Underwater Vehicles (AUVs) are used increasingly to collect field data for habitat mapping, albeit mostly in deeper waters (>20 m). Here we demonstrate and evaluate the use and potential advantages of AUV field data collection for calibration and validation of seagrass habitat mapping of shallow waters (< 5 m), from multispectral satellite imagery. The study was conducted in the seagrass habitats of the Eastern Banks (142 km2), Moreton Bay, Australia. In the field, georeferenced photos of the seagrass were collected along transects via snorkelling or an AUV. Photos from both collection methods were analysed manually for seagrass species composition and then used as calibration and validation data to map seagrass using an established semi-automated object based mapping routine. A comparison of the relative advantages and disadvantages of AUV and snorkeller collected field data sets and their influence on the mapping routine was conducted. AUV data collection was more consistent, repeatable and safer in comparison to snorkeller transects. Inclusion of deeper water AUV data resulted in mapping of a larger extent of seagrass (~7 km2, 5 % of study area) in the deeper waters of the site. Although overall map accuracies did not differ considerably, inclusion of the AUV data from deeper water transects corrected errors in seagrass mapped at depths to 5 m, but where the bottom is visible on satellite imagery. Our results demonstrate that further development of AUV technology is justified for the monitoring of seagrass habitats in ongoing management programs.
Resumo:
Long-term systematic population monitoring data sets are rare but are essential in identifying changes in species abundance. In contrast, community groups and natural history organizations have collected many species lists. These represent a large, untapped source of information on changes in abundance but are generally considered of little value. The major problem with using species lists to detect population changes is that the amount of effort used to obtain the list is often uncontrolled and usually unknown. It has been suggested that using the number of species on the list, the "list length," can be a measure of effort. This paper significantly extends the utility of Franklin's approach using Bayesian logistic regression. We demonstrate the value of List Length Analysis to model changes in species prevalence (i.e., the proportion of lists on which the species occurs) using bird lists collected by a local bird club over 40 years around Brisbane, southeast Queensland, Australia. We estimate the magnitude and certainty of change for 269 bird species and calculate the probabilities that there have been declines and increases of given magnitudes. List Length Analysis confirmed suspected species declines and increases. This method is an important complement to systematically designed intensive monitoring schemes and provides a means of utilizing data that may otherwise be deemed useless. The results of List Length Analysis can be used for targeting species of conservation concern for listing purposes or for more intensive monitoring. While Bayesian methods are not essential for List Length Analysis, they can offer more flexibility in interrogating the data and are able to provide a range of parameters that are easy to interpret and can facilitate conservation listing and prioritization. © 2010 by the Ecological Society of America.
Resumo:
The 2010 biodiversity target agreed by signatories to the Convention on Biological Diversity directed the attention of conservation professionals toward the development of indicators with which to measure changes in biological diversity at the global scale. We considered why global biodiversity indicators are needed, what characteristics successful global indicators have, and how existing indicators perform. Because monitoring could absorb a large proportion of funds available for conservation, we believe indicators should be linked explicitly to monitoring objectives and decisions about which monitoring schemes deserve funding should be informed by predictions of the value of such schemes to decision making. We suggest that raising awareness among the public and policy makers, auditing management actions, and informing policy choices are the most important global monitoring objectives. Using four well-developed indicators of biological diversity (extent of forests, coverage of protected areas, Living Planet Index, Red List Index) as examples, we analyzed the characteristics needed for indicators to meet these objectives. We recommend that conservation professionals improve on existing indicators by eliminating spatial biases in data availability, fill gaps in information about ecosystems other than forests, and improve understanding of the way indicators respond to policy changes. Monitoring is not an end in itself, and we believe it is vital that the ultimate objectives of global monitoring of biological diversity inform development of new indicators. ©2010 Society for Conservation Biology.
Resumo:
Background Procedural sedation and analgesia (PSA) is used to attenuate the pain and distress that may otherwise be experienced during diagnostic and interventional medical or dental procedures. As the risk of adverse events increases with the depth of sedation induced, frequent monitoring of level of consciousness is recommended. Level of consciousness is usually monitored during PSA with clinical observation. Processed electroencephalogram-based depth of anaesthesia (DoA) monitoring devices provide an alternative method to monitor level of consciousness that can be used in addition to clinical observation. However, there is uncertainty as to whether their routine use in PSA would be justified. Rigorous evaluation of the clinical benefits of DoA monitors during PSA, including comprehensive syntheses of the available evidence, is therefore required. One potential clinical benefit of using DoA monitoring during PSA is that the technology could improve patient safety by reducing sedation-related adverse events, such as death or permanent neurological disability. We hypothesise that earlier identification of lapses into deeper than intended levels of sedation using DoA monitoring leads to more effective titration of sedative and analgesic medications, and results in a reduction in the risk of adverse events caused by the consequences of over-sedation, such as hypoxaemia. The primary objective of this review is to determine whether using DoA monitoring during PSA in the hospital setting improves patient safety by reducing the risk of hypoxaemia (defined as an arterial partial pressure of oxygen below 60 mmHg or percentage of haemoglobin that is saturated with oxygen [SpO2] less than 90 %). Other potential clinical benefits of using DoA monitoring devices during sedation will be assessed as secondary outcomes. Methods/design Electronic databases will be systematically searched for randomized controlled trials comparing the use of depth of anaesthesia monitoring devices with clinical observation of level of consciousness during PSA. Language restrictions will not be imposed. Screening, study selection and data extraction will be performed by two independent reviewers. Disagreements will be resolved by discussion. Meta-analyses will be performed if suitable. Discussion This review will synthesise the evidence on an important potential clinical benefit of DoA monitoring during PSA within hospital settings.