315 resultados para methanol synthesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variants of the same process can be encountered within one organization or across different organizations. For example, different municipalities, courts, and rental agencies all need to support highly similar processes. In fact, procurement and sales processes can be found in almost any organization. However, despite these similarities, there is also the need to allow for local variations in a controlled manner. Therefore, many academics and practitioners have advocated the use of configurable process models (sometimes referred to as reference models). A configurable process model describes a family of similar process models in a given domain. Such a model can be configured to obtain a specific process model that is subsequently used to handle individual cases, for instance, to process customer orders. Process configuration is notoriously difficult as there may be all kinds of interdependencies between configuration decisions. In fact, an incorrect configuration may lead to behavioral issues such as deadlocks and livelocks. To address this problem, we present a novel verification approach inspired by the “operating guidelines” used for partner synthesis. We view the configuration process as an external service, and compute a characterization of all such services which meet particular requirements via the notion of configuration guideline. As a result, we can characterize all feasible configurations (i. e., configurations without behavioral problems) at design time, instead of repeatedly checking each individual configuration while configuring a process model.