112 resultados para metal ion sensor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging data streaming applications in Wireless Sensor Networks require reliable and energy-efficient Transport Protocols. Our recent Wireless Sensor Network deployment in the Burdekin delta, Australia, for water monitoring [T. Le Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, S. Brosnan, Design and deployment of a remote robust sensor network: experiences from an outdoor water quality monitoring network, in: Second IEEE Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2007), Dublin, Ireland, 2007] is one such example. This application involves streaming sensed data such as pressure, water flow rate, and salinity periodically from many scattered sensors to the sink node which in turn relays them via an IP network to a remote site for archiving, processing, and presentation. While latency is not a primary concern in this class of application (the sampling rate is usually in terms of minutes or hours), energy-efficiency is. Continuous long-term operation and reliable delivery of the sensed data to the sink are also desirable. This paper proposes ERTP, an Energy-efficient and Reliable Transport Protocol for Wireless Sensor Networks. ERTP is designed for data streaming applications, in which sensor readings are transmitted from one or more sensor sources to a base station (or sink). ERTP uses a statistical reliability metric which ensures the number of data packets delivered to the sink exceeds the defined threshold. Our extensive discrete event simulations and experimental evaluations show that ERTP is significantly more energyefficient than current approaches and can reduce energy consumption by more than 45% when compared to current approaches. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended WSN is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a wireless sensor network deployment - monitoring water quality, e.g. salinity and the level of the underground water table - in a remote tropical area of northern Australia. Our goal is to collect real time water quality measurements together with the amount of water being pumped out in the area, and investigate the impacts of current irrigation practice on the environments, in particular underground water salination. This is a challenging task featuring wide geographic area coverage (mean transmission range between nodes is more than 800 meters), highly variable radio propagations, high end-to-end packet delivery rate requirements, and hostile deployment environments. We have designed, implemented and deployed a sensor network system, which has been collecting water quality and flow measurements, e.g., water flow rate and water flow ticks for over one month. The preliminary results show that sensor networks are a promising solution to deploying a sustainable irrigation system, e.g., maximizing the amount of water pumped out from an area with minimum impact on water quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past few years, numerous data collection protocols have been developed for wireless sensor networks (WSNs). However, there has been no comparison of their relative performance in realistic environments. Here we report the results of an empirical study using a Fleck3 sensor network testbed for four different data collection protocols: One phase pull Directed Diffusion (DD), Expected Number of Transmissions (ETX), ETX with explicit acknowledgment (ETX-eAck), and ETX with implicit acknowledgment (ETX-iAck). Our empirical study provides useful insights for future sensor network deployments. When the required application end-to-end reliability is not strict (e.g., 70%) and link quality is good, DD and ETX are the best options because of their simplicity and low routing overhead. Both ETX-eAck and ETX-iAck achieve more than 90% end-to-end reliability when the link quality is reasonable (less than 25% packet loss). When the link quality is good, ETX-iAck introduces significantly less routing overhead (up to 50%) than ETX-eAck. However, if the radio transceiver supports variable packet length, ETX-eAck can outperform ETX-iAck when the link quality is poor. The important message from this paper is that choice of data collection protocol should come after the operating environment is understood. This understanding must include the characteristics of the radio transceiver, and link loss statistics from a long-term (across seasons and weather variation) radio survey of the site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses hardware design principles for long-term solar-powered wireless sensor networks. We argue that the assumptions and principles appropriate for long-term operation from primary cells are quite different from the solar power case with its abundant energy and regular charging cycles. We present data from a long-term deployment that illustrates the use of solar energy and rechargeable batteries to achieve 24x7 operation for over two years, since March 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a mobile, wireless sensor/actuator network application for use in the cattle breeding industry. Our goal is to prevent fighting between bulls in on-farm breeding paddocks by autonomously applying appropriate stimuli when one bull approaches another bull. This is an important application because fighting between high-value animals such as bulls during breeding seasons causes significant financial loss to producers. Furthermore, there are significant challenges in this type of application because it requires dynamic animal state estimation, real-time actuation and efficient mobile wireless transmissions. We designed and implemented an animal state estimation algorithm based on a state-machine mechanism for each animal. Autonomous actuation is performed based on the estimated states of an animal relative to other animals. A simple, yet effective, wireless communication model has been proposed and implemented to achieve high delivery rates in mobile environments. We evaluated the performance of our design by both simulations and field experiments, which demonstrated the effectiveness of our autonomous animal control system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large-scale, outdoor, pervasive computing system based on the Fleck hardware platform applies sensor network technology to farming. Comprising static and animal-borne mobile nodes, the system measures the state of a complex, dynamic system comprising climate, soil, pasture, and animals. This data supports prediction of the land's future state and improved management outcomes through closed-loop control. This article is part of a special issue, Building a Sensor-Rich World.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents research that is being conducted by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) with the aim of investigating the use of wireless sensor networks for automated livestock monitoring and control. It is difficult to achieve practical and reliable cattle monitoring with current conventional technologies due to challenges such as large grazing areas of cattle, long time periods of data sampling, and constantly varying physical environments. Wireless sensor networks bring a new level of possibilities into this area with the potential for greatly increased spatial and temporal resolution of measurement data. CSIRO has created a wireless sensor platform for animal behaviour monitoring where we are able to observe and collect information of animals without significantly interfering with them. Based on such monitoring information, we can identify each animal's behaviour and activities successfully

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agriculture accounts for a significant portion of the GDP in most developed countries. However, managing farms, particularly largescale extensive farming systems, is hindered by lack of data and increasing shortage of labour. We have deployed a large heterogeneous sensor network on a working farm to explore sensor network applications that can address some of the issues identified above. Our network is solar powered and has been running for over 6 months. The current deployment consists of over 40 moisture sensors that provide soil moisture profiles at varying depths, weight sensors to compute the amount of food and water consumed by animals, electronic tag readers, up to 40 sensors that can be used to track animal movement (consisting of GPS, compass and accelerometers), and 20 sensor/actuators that can be used to apply different stimuli (audio, vibration and mild electric shock) to the animal. The static part of the network is designed for 24/7 operation and is linked to the Internet via a dedicated high-gain radio link, also solar powered. The initial goals of the deployment are to provide a testbed for sensor network research in programmability and data handling while also being a vital tool for scientists to study animal behavior. Our longer term aim is to create a management system that completely transforms the way farms are managed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel platform for underwater sensor networks to be used for long-term monitoring of coral reefs and �sheries. The sensor network consists of static and mobile underwater sensor nodes. The nodes communicate point-to-point using a novel high-speed optical communication system integrated into the TinyOS stack, and they broadcast using an acoustic protocol integrated in the TinyOS stack. The nodes have a variety of sensing capabilities, including cameras, water temperature, and pressure. The mobile nodes can locate and hover above the static nodes for data muling, and they can perform network maintenance functions such as deployment, relocation, and recovery. In this paper we describe the hardware and software architecture of this underwater sensor network. We then describe the optical and acoustic networking protocols and present experimental networking and data collected in a pool, in rivers, and in the ocean. Finally, we describe our experiments with mobility for data muling in this network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes some new wireless sensor hardware developed for pastoral and environmental applications. From our early experiments with Mote hardware we were inspired to develop our devices with improved radio range, solar power capability, mechanical and electrical robustness, and with unique combinations of sensors. Here we describe the design and evolution of a small family of devices: radio/processor board, a soil moisture sensor interface, and a single board multi-sensor unit for animal tracking experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider multi-robot systems that include sensor nodes and aerial or ground robots networked together. We describe two cooperative algorithms that allow robots and sensors to enhance each other's performance. In the first algorithm, an aerial robot assists the localization of the sensors. In the second algorithm, a localized sensor network controls the navigation of an aerial robot. We present physical experiments with an flying robot and a large Mica Mote sensor network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces the application of a sensor network to navigate a flying robot. We have developed distributed algorithms and efficient geographic routing techniques to incrementally guide one or more robots to points of interest based on sensor gradient fields, or along paths defined in terms of Cartesian coordinates. The robot itself is an integral part of the localization process which establishes the positions of sensors which are not known a priori. We use this system in a large-scale outdoor experiment with Mote sensors to guide an autonomous helicopter along a path encoded in the network. A simple handheld device, using this same environmental infrastructure, is used to guide humans.