159 resultados para lattice-mismatch
Resumo:
Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.
Resumo:
Information mismatch and overload are two fundamental issues influencing the effectiveness of information filtering systems. Even though both term-based and pattern-based approaches have been proposed to address the issues, neither of these approaches alone can provide a satisfactory decision for determining the relevant information. This paper presents a novel two-stage decision model for solving the issues. The first stage is a novel rough analysis model to address the overload problem. The second stage is a pattern taxonomy mining model to address the mismatch problem. The experimental results on RCV1 and TREC filtering topics show that the proposed model significantly outperforms the state-of-the-art filtering systems.
Resumo:
Nowadays, everyone can effortlessly access a range of information on the World Wide Web (WWW). As information resources on the web continue to grow tremendously, it becomes progressively more difficult to meet high expectations of users and find relevant information. Although existing search engine technologies can find valuable information, however, they suffer from the problems of information overload and information mismatch. This paper presents a hybrid Web Information Retrieval approach allowing personalised search using ontology, user profile and collaborative filtering. This approach finds the context of user query with least user’s involvement, using ontology. Simultaneously, this approach uses time-based automatic user profile updating with user’s changing behaviour. Subsequently, this approach uses recommendations from similar users using collaborative filtering technique. The proposed method is evaluated with the FIRE 2010 dataset and manually generated dataset. Empirical analysis reveals that Precision, Recall and F-Score of most of the queries for many users are improved with proposed method.
Resumo:
In this paper, we describe an analysis for data collected on a three-dimensional spatial lattice with treatments applied at the horizontal lattice points. Spatial correlation is accounted for using a conditional autoregressive model. Observations are defined as neighbours only if they are at the same depth. This allows the corresponding variance components to vary by depth. We use the Markov chain Monte Carlo method with block updating, together with Krylov subspace methods, for efficient estimation of the model. The method is applicable to both regular and irregular horizontal lattices and hence to data collected at any set of horizontal sites for a set of depths or heights, for example, water column or soil profile data. The model for the three-dimensional data is applied to agricultural trial data for five separate days taken roughly six months apart in order to determine possible relationships over time. The purpose of the trial is to determine a form of cropping that leads to less moist soils in the root zone and beyond.We estimate moisture for each date, depth and treatment accounting for spatial correlation and determine relationships of these and other parameters over time.
Resumo:
Modern technology now has the ability to generate large datasets over space and time. Such data typically exhibit high autocorrelations over all dimensions. The field trial data motivating the methods of this paper were collected to examine the behaviour of traditional cropping and to determine a cropping system which could maximise water use for grain production while minimising leakage below the crop root zone. They consist of moisture measurements made at 15 depths across 3 rows and 18 columns, in the lattice framework of an agricultural field. Bayesian conditional autoregressive (CAR) models are used to account for local site correlations. Conditional autoregressive models have not been widely used in analyses of agricultural data. This paper serves to illustrate the usefulness of these models in this field, along with the ease of implementation in WinBUGS, a freely available software package. The innovation is the fitting of separate conditional autoregressive models for each depth layer, the ‘layered CAR model’, while simultaneously estimating depth profile functions for each site treatment. Modelling interest also lay in how best to model the treatment effect depth profiles, and in the choice of neighbourhood structure for the spatial autocorrelation model. The favoured model fitted the treatment effects as splines over depth, and treated depth, the basis for the regression model, as measured with error, while fitting CAR neighbourhood models by depth layer. It is hierarchical, with separate onditional autoregressive spatial variance components at each depth, and the fixed terms which involve an errors-in-measurement model treat depth errors as interval-censored measurement error. The Bayesian framework permits transparent specification and easy comparison of the various complex models compared.
Resumo:
Transport and logistics are essential to effective business. Very little is currently known about the impact of improved transport on micro-enterprises in developing economies and whether improvements in this area would assist the very poor. This paper looks at the obstacles of an inefficient transport facilitation system and the high costs incurred by 22 survival micro-entrepreneurs funded by the same local NGO and operating in diverse industry sectors in a peri-urban context in Mozambique. Six case studies are selected to illustrate the most common constraints they face. The perspectives of the micro-business owners are confronted with those of government officials and community leaders for two reasons: to identify any mismatch and to discuss possible solutions. Significant discrepancies are detected between government agenda and needs of the population, while community-based entrepreneurship (CBE) is discussed as a possible collective strategy in dealing with the problem.
Resumo:
Discrete Markov random field models provide a natural framework for representing images or spatial datasets. They model the spatial association present while providing a convenient Markovian dependency structure and strong edge-preservation properties. However, parameter estimation for discrete Markov random field models is difficult due to the complex form of the associated normalizing constant for the likelihood function. For large lattices, the reduced dependence approximation to the normalizing constant is based on the concept of performing computationally efficient and feasible forward recursions on smaller sublattices which are then suitably combined to estimate the constant for the whole lattice. We present an efficient computational extension of the forward recursion approach for the autologistic model to lattices that have an irregularly shaped boundary and which may contain regions with no data; these lattices are typical in applications. Consequently, we also extend the reduced dependence approximation to these scenarios enabling us to implement a practical and efficient non-simulation based approach for spatial data analysis within the variational Bayesian framework. The methodology is illustrated through application to simulated data and example images. The supplemental materials include our C++ source code for computing the approximate normalizing constant and simulation studies.
Resumo:
Background/aims: Cardiovascular disease (CVD) continues to impose a heavy burden in terms of cost, disability and death in Australia. Recent evidence suggests that increasing remoteness, where cardiac services are scarce, is linked to an increased risk of dying from CVD. Fatal CVD events are reported to be between 20% and 50% higher in rural areas compared to major cities. Method: This project, with its extensive use of Geographic Information Systems (GIS) technology, will rank 11,338 rural and remote population centres to identify geographical ‘hotspots’ where there is likely to be a mismatch between the demand for and actual provision of cardiovascular services. It will, therefore, guide more equitable provision of services to rural and remote communities. Outcomes: The CARDIAC-ARIA project is designed to; map the type and location of cardiovascular services currently available in Australia, relative to the distribution of individuals who currently have symptomatic CVD; determine, by expert panel, what are the minimal requirements for comprehensive cardiovascular health support in metropolitan and rural communities and derive a rating classification based on the Accessibility and Remoteness Index of Australia (ARIA) for each of Australia's 11,338 rural and remote population centres. Conclusion: This unique, innovative and highly collaborative project has the potential to deliver a powerful tool to highlight and combat the burden imposed by cardiovascular disease (CVD) in Australia.
Resumo:
Public participate in the planning and design of major public infrastructure and construction (PIC) projects is crucial to their success, as the interests of different stakeholders can be systematically captured and built into the finalised scheme. However, public participation may not always yield a mutually acceptable solution, especially when the interests of stakeholders are diverse and conflicting. Confrontations and disputes can arise unless the concerns or needs of the community are carefully analysed and addressed. The aim of the paper is to propose a systematic method of analysing stakeholder concerns relating to PIC projects by examining the degree of consensus and/or conflict involved. The results of a questionnaire survey and a series of interviews with different entities are provided, which indicate the existence of a significant divergence of views among stakeholder groups and that conflicts arise when there is a mismatch between peoples’ perception concerning money and happiness on the one hand and development and damages on the other. Policy and decision-makers should strive to resolve at least the majority of conflicts that arise throughout the lifecycle of major PIC projects so as to maximise their chance of success.
Resumo:
Workplace mobbing is a particularly serious phenomenon that is extremely costly to organizations and the health of those targeted. This article reports on a study of self-identified targets of mobbing. Findings support a five-stage process of mobbing, which commences with unresolved conflict and leads ultimately to expulsion from the organization. Participants report a number of experiences, such as lengthy investigations and escalation of conflict, that result in an increasingly unbalanced sense of power away from the individual and towards the organization. Revealed is a mismatch between the expected organizational justice processes and support and the actual experience. Recommendations for approaching this problem are discussed.
Resumo:
The effects of tumour motion during radiation therapy delivery have been widely investigated. Motion effects have become increasingly important with the introduction of dynamic radiotherapy delivery modalities such as enhanced dynamic wedges (EDWs) and intensity modulated radiation therapy (IMRT) where a dynamically collimated radiation beam is delivered to the moving target, resulting in dose blurring and interplay effects which are a consequence of the combined tumor and beam motion. Prior to this work, reported studies on the EDW based interplay effects have been restricted to the use of experimental methods for assessing single-field non-fractionated treatments. In this work, the interplay effects have been investigated for EDW treatments. Single and multiple field treatments have been studied using experimental and Monte Carlo (MC) methods. Initially this work experimentally studies interplay effects for single-field non-fractionated EDW treatments, using radiation dosimetry systems placed on a sinusoidaly moving platform. A number of wedge angles (60º, 45º and 15º), field sizes (20 × 20, 10 × 10 and 5 × 5 cm2), amplitudes (10-40 mm in step of 10 mm) and periods (2 s, 3 s, 4.5 s and 6 s) of tumor motion are analysed (using gamma analysis) for parallel and perpendicular motions (where the tumor and jaw motions are either parallel or perpendicular to each other). For parallel motion it was found that both the amplitude and period of tumor motion affect the interplay, this becomes more prominent where the collimator tumor speeds become identical. For perpendicular motion the amplitude of tumor motion is the dominant factor where as varying the period of tumor motion has no observable effect on the dose distribution. The wedge angle results suggest that the use of a large wedge angle generates greater dose variation for both parallel and perpendicular motions. The use of small field size with a large tumor motion results in the loss of wedged dose distribution for both parallel and perpendicular motion. From these single field measurements a motion amplitude and period have been identified which show the poorest agreement between the target motion and dynamic delivery and these are used as the „worst case motion parameters.. The experimental work is then extended to multiple-field fractionated treatments. Here a number of pre-existing, multiple–field, wedged lung plans are delivered to the radiation dosimetry systems, employing the worst case motion parameters. Moreover a four field EDW lung plan (using a 4D CT data set) is delivered to the IMRT quality control phantom with dummy tumor insert over four fractions using the worst case parameters i.e. 40 mm amplitude and 6 s period values. The analysis of the film doses using gamma analysis at 3%-3mm indicate the non averaging of the interplay effects for this particular study with a gamma pass rate of 49%. To enable Monte Carlo modelling of the problem, the DYNJAWS component module (CM) of the BEAMnrc user code is validated and automated. DYNJAWS has been recently introduced to model the dynamic wedges. DYNJAWS is therefore commissioned for 6 MV and 10 MV photon energies. It is shown that this CM can accurately model the EDWs for a number of wedge angles and field sizes. The dynamic and step and shoot modes of the CM are compared for their accuracy in modelling the EDW. It is shown that dynamic mode is more accurate. An automation of the DYNJAWS specific input file has been carried out. This file specifies the probability of selection of a subfield and the respective jaw coordinates. This automation simplifies the generation of the BEAMnrc input files for DYNJAWS. The DYNJAWS commissioned model is then used to study multiple field EDW treatments using MC methods. The 4D CT data of an IMRT phantom with the dummy tumor is used to produce a set of Monte Carlo simulation phantoms, onto which the delivery of single field and multiple field EDW treatments is simulated. A number of static and motion multiple field EDW plans have been simulated. The comparison of dose volume histograms (DVHs) and gamma volume histograms (GVHs) for four field EDW treatments (where the collimator and patient motion is in the same direction) using small (15º) and large wedge angles (60º) indicates a greater mismatch between the static and motion cases for the large wedge angle. Finally, to use gel dosimetry as a validation tool, a new technique called the „zero-scan method. is developed for reading the gel dosimeters with x-ray computed tomography (CT). It has been shown that multiple scans of a gel dosimeter (in this case 360 scans) can be used to reconstruct a zero scan image. This zero scan image has a similar precision to an image obtained by averaging the CT images, without the additional dose delivered by the CT scans. In this investigation the interplay effects have been studied for single and multiple field fractionated EDW treatments using experimental and Monte Carlo methods. For using the Monte Carlo methods the DYNJAWS component module of the BEAMnrc code has been validated and automated and further used to study the interplay for multiple field EDW treatments. Zero-scan method, a new gel dosimetry readout technique has been developed for reading the gel images using x-ray CT without losing the precision and accuracy.
Resumo:
The combined impact of social class, cultural background and experience upon early literacy achievement in the first year of schooling is among the most durable questions in educational research. Links have been established between social class and achievement but literacy involves complex social and cognitive practices that are not necessarily reflected in the connections that have been made. The complexity of relationships between social class, cultural background and experience, and their impact on early literacy achievement have received little research attention. Recent refinements of the broad terms of social class or socioeconomic status have questioned the established links between social class and achievement. Nevertheless, it remains difficult to move beyond deficit and mismatch models of explaining and understanding the underperformance of children from lower socioeconomic and cultural minority groups when conventional measures are used. The data from an Australian pilot study reported here add to the increasing evidence that income is not necessarily related directly to home literacy resources or to how those resources are used. Further, the data show that the level of print resources in the home may not be a good indicator of the level of use of those resources.
Resumo:
Purpose To compare self-reported driving ability with objective measures of on-road driving performance in a large cohort of older drivers. Methods 270 community-living adults aged 70 – 88 years recruited via the electoral roll completed a standardized assessment of on-road driving performance and questionnaires determining perceptions of their own driving ability, confidence and driving difficulties. Retrospective self-reported crash data over the previous five years were recorded. Results Participants reported difficulty with only selected driving situations, including driving into the sun, in unfamiliar areas, in wet conditions, and at night or dusk. The majority of participants rated their own driving as good to excellent. Of the 47 (17%) of drivers who were rated as potentially unsafe to drive, 66% rated their own driving as good to excellent. Drivers who made critical errors, where the driving instructor had to take control of the vehicle, had no lower self-rating of driving ability then the rest of the group. The discrepancy in self-perceptions of driving and participants’ safety rating on the on-road assessment was significantly associated with self-reported retrospective crash rates, where those drivers who displayed greater overconfidence in their own driving were significantly more likely to report a crash. Conclusions This study demonstrates that older drivers with the greatest mismatch between actual and self-rated driving ability pose the greatest risk to road safety. Therefore licensing authorities should not assume that when older individuals’ driving abilities begin to decline they will necessarily be aware of these changes and adopt appropriate compensatory driving behaviours; rather, it is essential that evidence-based assessments are adopted.
Resumo:
In this thesis, the author proposed and developed gas sensors made of nanostructured WO3 thin film by a thermal evaporation technique. This technique gives control over film thickness, grain size and purity. The device fabrication, nanostructured material synthesis, characterization and gas sensing performance have been undertaken. Three different types of nanostructured thin films, namely, pure WO3 thin films, iron-doped WO3 thin films by co-evaporation and Fe-implanted WO3 thin films have been synthesized. All the thin films have a film thickness of 300 nm. The physical, chemical and electronic properties of these films have been optimized by annealing heat treatment at 300ºC and 400ºC for 2 hours in air. Various analytical techniques were employed to characterize these films. Atomic Force Microscopy and Transmission Electron Microscopy revealed a very small grain size of the order 5-10 nm in as-deposited WO3 films, and annealing at 300ºC or 400ºC did not result in any significant change in grain size. X-ray diffraction (XRD) analysis revealed a highly amorphous structure of as-deposited films. Annealing at 300ºC for 2 hours in air did not improve crystallinity in these films. However, annealing at 400ºC for 2 hours in air significantly improved the crystallinity in pure and iron-doped WO3 thin films, whereas it only slightly improved the crystallinity of iron-implanted WO3 thin film as a result of implantation. Rutherford backscattered spectroscopy revealed an iron content of 0.5 at.% and 5.5 at.% in iron-doped and iron-implanted WO3 thin films, respectively. The RBS results have been confirmed using energy dispersive x-ray spectroscopy (EDX) during analysis of the films using transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) revealed significant lowering of W 4f7/2 binding energy in all films annealed at 400ºC as compared with the as-deposited and 300ºC annealed films. Lowering of W 4f7/2 is due to increase in number of oxygen vacancies in the films and is considered highly beneficial for gas sensing. Raman analysis revealed that 400ºC annealed films except the iron-implanted film are highly crystalline with significant number of O-W-O bonds, which was consistent with the XRD results. Additionally, XRD, XPS and Raman analyses showed no evidence of secondary peaks corresponding to compounds of iron due to iron doping or implantation. This provided an understanding that iron was incorporated in the host WO3 matrix rather than as a separate dispersed compound or as catalyst on the surface. WO3 thin film based gas sensors are known to operate efficiently in the temperature range 200ºC-500 ºC. In the present study, by optimizing the physical, chemical and electronic properties through heat treatment and doping, an optimum response to H2, ethanol and CO has been achieved at a low operating temperature of 150ºC. Pure WO3 thin film annealed at 400ºC showed the highest sensitivity towards H2 at 150ºC due to its very small grain size and porosity, coupled with high number of oxygen vacancies, whereas Fe-doped WO3 film annealed at 400ºC showed the highest sensitivity to ethanol at an operating temperature of 150ºC due to its crystallinity, increased number of oxygen vacancies and higher degree of crystal distortions attributed to Fe addition. Pure WO3 films are known to be insensitive to CO, but iron-doped WO3 thin film annealed at 300ºC and 400ºC showed an optimum response to CO at an operating temperature of 150ºC. This result is attributed to lattice distortions produced in WO3 host matrix as a result of iron incorporation as substitutional impurity. However, iron-implanted WO3 thin films did not show any promising response towards the tested gases as the film structure has been damaged due to implantation, and annealing at 300ºC or 400ºC was not sufficient to induce crystallinity in these films. This study has demonstrated enhanced sensing properties of WO3 thin film sensors towards CO at lower operating temperature, which was achieved by optimizing the physical, chemical and electronic properties of the WO3 film through Fe doping and annealing. This study can be further extended to systematically investigate the effects of different Fe concentrations (0.5 at.% to 10 at.%) on the sensing performance of WO3 thin film gas sensors towards CO.
Resumo:
Purpose Evidence suggests that improved empathy behaviours among healthcare professionals directly impacts on healthcare outcomes. However, the ‘nebulous’ properties of empathic behaviour often means that healthcare profession educators fail to incorporate the explicit teaching and assessment of empathy within the curriculum. This represents a potential mismatch between what is taught by universities and what is actually needed in the healthcare industry. The objective of this study was to assess the extent of empathy in paramedic students across seven Australian universities. Methods A cross-sectional study using a paper-based questionnaire employing a convenience sample of first, second, and third year undergraduate paramedic students. Student empathy levels were measured using a standardised self-reporting instrument: Jefferson Scale of Physician Empathy – Health Profession Students (JSPE-HPS). Findings A total of 783 students participated in the study of which 57% were females. The overall JSPE-HPS mean score was 106.74 (SD=14.8). Females had greater mean empathy scores than males 108.69 v 103.58 (p=0.042). First year undergraduate paramedic mean empathy levels were the lowest, 106.29 (SD=15.40) with second years the highest at 107.17 (SD=14.90). Value The overall findings provide a framework for educators to begin constructing guidelines focusing on the need to incorporate, promote and instil empathy into paramedic students in order to better prepare them for future out-of-hospital healthcare practice.