474 resultados para indirizzo :: 976 :: Earth resources engineering
Resumo:
Increased or fluctuating resources may facilitate opportunities for invasive exotic plants to dominate. This hypothesis does not, however, explain how invasive species succeed in regions characterized by low resource conditions or how these species persist in the lulls between high resource periods. We compare the growth of three co-occurring C4 perennial bunchgrasses under low resource conditions: an exotic grass, Eragrostis curvula (African lovegrass) and two native grasses, Themeda triandra and Eragrostis sororia. We grew each species over 12 weeks under low nutrients and three low water regimes differentiated by timing: continuous, pulsed, and mixed treatments (switched from continuous to pulsed and back to continuous). Over time, we measured germination rates, time to germination (first and second generations), height, root biomass, vegetative biomass, and reproductive biomass. Contrary to our expectations that the pulsed watering regime would favor the invader, water-supply treatments had little significant effect on plant growth. We did find inherent advantages in a suite of early colonization traits that likely favor African lovegrass over the natives including faster germination speed, earlier flowering times, faster growth rates and from 2 weeks onward it was taller. African lovegrass also showed similar growth allocation strategies to the native grasses in terms of biomass levels belowground, but produced more vegetative biomass than kangaroo grass. Overall our results suggest that even under low resource conditions invasive plant species like African lovegrass can grow similarly to native grasses, and for some key colonization traits, like germination rate, perform better than natives.
Resumo:
Stromatolites consist primarily of trapped and bound ambient sediment and/or authigenic mineral precipitates, but discrimination of the two constituents is difficult where stromatolites have a fine texture. We used laser ablation-inductively coupled plasma-mass spectrometry to measure trace element (rare earth element – REE, Y and Th) concentrations in both stromatolites (domical and branched) and closely associated particulate carbonate sediment in interspaces (spaces between columns or branches) from bioherms within the Neoproterozoic Bitter Springs Formation, central Australia. Our high resolution sampling allows discrimination of shale-normalised REE patterns between carbonate in stromatolites and immediately adjacent, fine-grained ambient particulate carbonate sediment from interspaces. Whereas all samples show similar negative La and Ce anomalies, positive Gd anomalies and chondritic Y/Ho ratios, the stromatolites and non-stromatolite sediment are distinguishable on the basis of consistently elevated light REEs (LREEs) in the stromatolitic laminae and relatively depleted LREEs in the particulate sediment samples. Additionally, concentrations of the lithophile element Th are higher in ambient sediment samples than in stromatolites, consistent with accumulation of some fine siliciclastic detrital material in the ambient sediment but a near absence in the stromatolites. These findings are consistent with the stromatolites consisting dominantly of in situ carbonate precipitates rather than trapped and bound ambient sediment. Hence, high resolution trace element (REE + Y, Th) geochemistry can discriminate fine-grained carbonates in these stromatolites from coeval non-stromatolitic carbonate sediment and demonstrates that the sampled stromatolites formed primarily from in situ precipitation, presumably within microbial mats/biofilms, rather than by trapping and binding of ambient sediment. Identification of the source of fine carbonate in stromatolites is significant, because if it is not too heavily contaminated by trapped ambient sediment, it may contain geochemical biosignatures and/or direct evidence of the local water chemistry in which the precipitates formed.
Resumo:
The presence of large number of single-phase distributed energy resources (DERs) can cause severe power quality problems in distribution networks. The DERs can be installed in random locations. This may cause the generation in a particular phase exceeds the load demand in that phase. Therefore the excess power in that phase will be fed back to the transmission network. To avoid this problem, the paper proposes the use of distribution static compensator (DSTATCOM) that needs to be connected at the first bus following a substation. When operated properly, the DSTATCOM can facilitate a set of balanced current flow from the substation, even when excess power is generated by DERs. The proposals are validated through extensive digital computer simulation studies using PSCAD and MATLAB.
Resumo:
Crop simulation models have the potential to assess the risk associated with the selection of a specific N fertilizer rate, by integrating the effects of soil-crop interactions on crop growth under different pedo-climatic and management conditions. The objective of this study was to simulate the environmental and economic impact (nitrate leaching and N2O emissions) of a spatially variable N fertilizer application in an irrigated maize field in Italy. The validated SALUS model was run with 5 nitrogen rates scenarios, 50, 100, 150, 200, and 250 kg N ha−1, with the latter being the N fertilization adopted by the farmer. The long-term (25 years) simulations were performed on two previously identified spatially and temporally stable zones, a high yielding and low yielding zone. The simulation results showed that N fertilizer rate can be reduced without affecting yield and net return. The marginal net return was on average higher for the high yield zone, with values ranging from 1550 to 2650 € ha−1 for the 200 N and 1485 to 2875 € ha−1 for the 250 N. N leaching varied between 16.4 and 19.3 kg N ha−1 for the 200 N and the 250 N in the high yield zone. In the low yield zone, the 250 N had a significantly higher N leaching. N2O emissions varied between 0.28 kg N2O ha−1 for the 50 kg N ha−1 rate to a maximum of 1.41 kg N2O ha−1 for the 250 kg N ha−1 rate.
Resumo:
Cotton is one of the most important irrigated crops in subtropical Australia. In recent years, cotton production has been severely affected by the worst drought in recorded history, with the 2007–08 growing season recording the lowest average cotton yield in 30 years. The use of a crop simulation model to simulate the long-term temporal distribution of cotton yields under different levels of irrigation and the marginal value for each unit of water applied is important in determining the economic feasibility of current irrigation practices. The objectives of this study were to: (i) evaluate the CROPGRO-Cotton simulation model for studying crop growth under deficit irrigation scenarios across ten locations in New South Wales (NSW) and Queensland (Qld); (ii) evaluate agronomic and economic responses to water inputs across the ten locations; and (iii) determine the economically optimal irrigation level. The CROPGRO-Cotton simulation model was evaluated using 2 years of experimental data collected at Kingsthorpe, Qld. The model was further evaluated using data from nine locations between northern NSW and southern Qld. Long-term simulations were based on the prevalent furrowirrigation practice of refilling the soil profile when the plant -available soil water content is<50%. The model closely estimated lint yield for all locations evaluated. Our results showed that the amounts of water needed to maximise profit and maximise yield are different, which has economic and environmental implications. Irrigation needed to maximise profits varied with both agronomic and economic factors, which can be quite variable with season and location. Therefore, better tools and information that consider the agronomic and economic implications of irrigation decisions need to be developed and made available to growers.
Resumo:
As a result of rapid urbanisation, population growth, changes in lifestyle, pollution and the impacts of climate change, water provision has become a critical challenge for planners and policy-makers. In the wake of increasingly difficult water provision and drought, the notion that freshwater is a finite and vulnerable resource is increasingly being realised. Many city administrations around the world are struggling to provide water security for their residents to maintain lifestyle and economic growth. This chapter reviews the global challenge of providing freshwater to sustain lifestyles and economic growth, and the contributing challenges of climate change, urbanisation, population growth and problems in rainfall distribution. The chapter proceeds to evaluate major alternatives to current water sources such as conservation, recycling and reclamation, and desalination. Integrated water resource management is briefly looked at to explore its role in complementing water provision. A comparative study on alternative resources is undertaken to evaluate their strengths, weaknesses, opportunities and constraints, and the results are discussed.
Resumo:
In recent years, cities have shown increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change, and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning, human needs are supplied while natural resources are used in the most effective and sustainable manner and ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, this chapter briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, it presents a conceptual framework for a new methodology for developing sustainable urban ecosystems through ecological planning approach.
Resumo:
Coal Seam Gas (CSG) production is achieved by extracting groundwater to depressurize coal seam aquifers in order to promote methane gas desorption from coal micropores. CSG waters are characteristically alkaline, have a neutral pH (~7), are of the Na-HCO3-Cl type, and exhibit brackish salinity. In 2004, a CSG exploration company carried out a gas flow test in an exploration well located in Maramarua (Waikato Region, New Zealand). This resulted in 33 water samples exhibiting noteworthy chemical variations induced by pumping. This research identifies the main causes of hydrochemical variations in CSG water, makes recommendations to manage this effect, and discusses potential environmental implications. Hydrochemical variations were studied using Factor Analysis and this was supported with hydrochemical modelling and a laboratory experiment. This reveals carbon dioxide (CO2) degassing as the principal source of hydrochemical variability (about 33%). Factor Analysis also shows that major ion variations could also reflect changes in hydrochemical composition induced by different pumping regimes. Subsequent chloride, calcium, and TDS variations could be a consequence of analytical errors potentially committed during laboratory determinations. CSG water chemical variations due to degassing during pumping can be minimized with good completion and production techniques; variations due to sample degassing can be controlled by taking precautions during sampling, transit, storage and analysis. In addition, the degassing effect observed in CSG waters can lead to an underestimation of their potential environmental effect. Calcium precipitation due to exposure to normal atmospheric pressure results in a 23% increase in SAR values from Maramarua CSG water samples.
Resumo:
Coal Seam Gas (CSG) is a form of natural gas (mainly methane) sorbed in underground coal beds. To mine this gas, wells are drilled directly into an underground coal seam and groundwater (CSG water) is pumped out to the surface. This lowers the downhole piezometric pressure and enables gas desporption from the coal matrix. In the United States, this gas has been extracted commercially since the 1980s. The economic success of US CSG projects has inspired exploration and development in Australia and New Zealand. In Australia, Queensland’s Bowen and Surat basins have been the subject of increased CSG development over the last decade. CSG growth in other Australian basins has not matured to the same level but exploration and development are taking place at an accelerated pace in the Sydney Basin (Illawarra and the Hunter Valley, NSW) and in the Gunnedah Basin. Similarly, CSG exploration in New Zealand has focused in the Waikato region (Maramarua and Huntly), in the West Coast region (Buller, Reefton, and Greymouth), and in Southland (Kaitangata, Mataura, and Ohai). Figure 1 shows a Shcoeller diagram with CSG samples from selected basins in Australia, New Zealand, and the USA. CSG water from all of these basins exhibit the same geochemical signature – low calcium, low magnesium, high bicarbonate, low sulphate and, sometimes, high chloride. This water quality is a direct result of specific biological and geological processes that have taken part in the formation of CSG. In general, these processes include the weathering of rocks (carbonates, dolomite, and halite), cation exchange with clays (responsible for enhanced sodium and depleted calcium and magnesium), and biogenic processes (accounting for the presence of high bicarbonate concentrations). The salinity of CSG waters tends to be brackish (TDS < 30000 mg/l) with a fairly neutral pH. These particular characteristics need to be taken into consideration when assessing water management and disposal alternatives. Environmental issues associated with CSG water disposal have been prominent in developed basins such as the Powder River Basin (PRB) in the United States. When disposed on the land or used for irrigation, water having a high dissolved salts content may reduce water availability to crops thus affecting crop yield. In addition, the high sodium, low calcium and low magnesium concentrations increase the potential to disperse soils and significantly reduce the water infiltration rate. Therefore, CSG waters need to be properly characterised, treated, and disposed to safeguard the environment without compromising other natural resources.
Resumo:
This spreadsheet calculates carbonate speciation using carbonate equilibrium equations at standard conditions (T=25°C) with ionic strength corrections. The user will typically be able to calculate the different carbonate species by entering total alkalinity and pH. This spreadsheet contains additional tools to calculate the Langelier Index for calcium and the SAR of the water. Note that in this last calculation the potential for calcium precipitation is not taken into account. The last tool presented here is a carbonate speciation tool in open systems (e.g. open to the atmosphere) which takes into account atmospheric pressure.
Resumo:
Purpose – As a consequence of rapid urbanisation and globalisation, cities have become the engines of population and economic growth. Hence, natural resources in and around the cities have been exposed to externalities of urban development processes. This paper introduces a new sustainability assessment approach that is tested in a pilot study. The paper aims to assist policy-makers and planners investigating the impacts of development on environmental systems, and produce effective policies for sustainable urban development. Design/methodology/approach – The paper introduces an indicator-based indexing model entitled “Indexing Model for the Assessment of Sustainable Urban Ecosystems” (ASSURE). The ASSURE indexing model produces a set of micro-level environmental sustainability indices that is aimed to be used in the evaluation and monitoring of the interaction between human activities and urban ecosystems. The model is an innovative approach designed to assess the resilience of ecosystems towards impacts of current development plans and the results serve as a guide for policymakers to take actions towards achieving sustainability. Findings – The indexing model has been tested in a pilot case study within the Gold Coast City, Queensland, Australia. This paper presents the methodology of the model and outlines the preliminary findings of the pilot study. The paper concludes with a discussion on the findings and recommendations put forward for future development and implementation of the model. Originality/value – Presently, there is a few sustainability indices developed to measure the sustainability at local, regional, national and international levels. However, due to challenges in data collection difficulties and availability of local data, there is no effective assessment model at the microlevel that the assessment of urban ecosystem sustainability accurately. The model introduced in this paper fills this gap by focusing on parcel-scale and benchmarking the environmental performance in micro-level.
Resumo:
The selection of appropriate analogue materials is a central consideration in the design of realistic physical models. We investigate the rheology of highly-filled silicone polymers in order to find materials with a power-law strain-rate softening rheology suitable for modelling rock deformation by dislocation creep and report the rheological properties of the materials as functions of the filler content. The mixtures exhibit strain-rate softening behaviour but with increasing amounts of filler become strain-dependent. For the strain-independent viscous materials, flow laws are presented while for strain-dependent materials the relative importance of strain and strain rate softening/hardening is reported. If the stress or strain rate is above a threshold value some highly-filled silicone polymers may be considered linear visco-elastic (strain independent) and power-law strain-rate softening. The power-law exponent can be raised from 1 to ~3 by using mixtures of high-viscosity silicone and plasticine. However, the need for high shear strain rates to obtain the power-law rheology imposes some restrictions on the usage of such materials for geodynamic modelling. Two simple shear experiments are presented that use Newtonian and power-law strain-rate softening materials. The results demonstrate how materials with power-law rheology result in better strain localization in analogue experiments.