127 resultados para hollow


Relevância:

10.00% 10.00%

Publicador:

Resumo:

When used as floor joists, the new mono-symmetric LiteSteel beam (LSB) sections require web openings to provide access for inspections and various services. The LSBs consist of two rectangular hollow flanges connected by a slender web, and are subjected to lateral distortional buckling effects in the intermediate span range. Their member capacity design formulae developed to date are based on their elastic lateral buckling moments, and only limited research has been undertaken to predict the elastic lateral buckling moments of LSBs with web openings. This paper addresses this research gap by reporting the development of web opening modelling techniques based on an equivalent reduced web thickness concept and a numerical method for predicting the elastic buckling moments of LSBs with circular web openings. The proposed numerical method was based on a formulation of the total potential energy of LSBs with circular web openings. The accuracy of the proposed method’s use with the aforementioned modelling techniques was verified through comparison of its results with those of finite strip and finite element analyses of various LSBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using its patented dual electric resistance welding and automated continuous roll-forming technologies. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. Its flexural strength for intermediate spans is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion. Recent research on LSBs has mainly focussed on their lateral distortional buckling behaviour under uniform moment conditions. However, in practice, LSB flexural members are subjected to non-uniform moment distributions and load height effects as they are often under transverse loads applied above or below their shear centre. These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The non-uniform moment distribution and load height effects of transverse loading on cantilever LSBs, and the suitability of the current design modification factors to include such effects are not known. This paper presents a numerical study based on finite element analyses of the elastic lateral buckling strength of cantilever LSBs subject to transverse loading, and the results. The applicability of the design modification factors from various steel design codes was reviewed, and suitable recommendations are presented for cantilever LSBs subject to transverse loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australian manufacturers recently developed a new mono-symmetric cold-formed steel hollow flange channel section known as LiteSteel Beam. The innovative LSB sections with rectangular flanges are currently being used as floor joists and bearers in buildings. In order to assess their behaviour and section moment capacity including the presence of any inelastic reserve bending capacity, 20 section moment capacity tests were conducted in this study. Test results were compared with the section moment capacities predicted by the steel design codes. Although the current cold-formed steel design rules generally limit the section moment capacities to their first yield moments, test results showed that inelastic reserve bending capacity was present in the compact and non-compact LSB sections. The results have shown that suitable modifications to the current design rules are needed to allow the inclusion of available inelastic bending capacities of LSBs in design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is an innovative cold-formed steel hollow flange section. When used as floor joists, the LSB sections require holes in the web to provide access for various services. In this study a detailed investigation was undertaken into the elastic lateral distortional buckling behaviour of LSBs with circular web openings subjected to a uniform moment using finite element analysis. Validated ideal finite element models were used first to study the effect of web holes on their elastic lateral distortional buckling behaviour. An equivalent web thickness method was then proposed using four different equations for the elastic buckling analyses of LSBs with web holes. It was found that two of them could be successfully used with approximate numerical models based on solid web elements with an equivalent reduced thickness to predict the elastic lateral distortional buckling moments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geelong, Victoria’s second city, has an AFL football club whose culture and identity is closely tied to the city itself. An analysis of its playing group for the colonial period demonstrates that this local tribalism began early. As football became professionalised towards the end of the nineteenth century, country Victoria lost power in relative terms to metropolitan Melbourne: for example, Ballarat’s three main clubs lost their senior status. But Geelong, with its one remaining senior club, prospered and was admitted to the VFL ranks in 1897. The Geelong players were the sons and nephews of the Western District squattocracy and so had access to networks of power and influence. Many attended the prestigious Geelong Grammar School and the worthy Geelong College (in surprisingly equal numbers). They pursued careers both on the land and in professional roles, and maintained the social connections they had built through the club and other local institutions. Despite their elite standing, however, they continued to be regarded by the supporter base as an embodiment of the city and a defence against the city’s Melbourne critics that Geelong was a mere ‘sleepy hollow’.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the details of an experimental study of a cold-formed steel beam known as LiteSteel Beam (LSB) subject to combined shear and bending actions. The LSBs have the beneficial characteristics of torsionally rigid rectangular hollow flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in residential, industrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research studies have been undertaken on the flexural and shear strengths of LSBs. To date, however, no investigation has been conducted into the strength of LSB sections under combined shear and bending actions. Hence a detailed experimental study involving 18 tests was undertaken to investigate the behaviour and strength of LSBs under combined shear and bending actions. Test results showed that AS/NZS 4600 design rules for unstiffened webs grossly underestimated the capacity of LSBs. Therefore improved design equations were proposed for the combined shear and bending capacities of LSBs based on experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the details of a numerical study of a cold-formed steel beam known as LiteSteel Beam (LSB) subject to combined shear and bending actions. The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. They have a unique shape of a channel beam with two rectangular hollow flanges. To date, however, no investigation has been conducted into the strength of LSB sections under combined shear and bending actions. Hence a numerical study was undertaken to investigate the behaviour and strength of LSBs subject to combined shear and bending actions. In this research, finite element models of LSBs were developed to simulate the combined shear and bending behaviour and strength of LSBs. They were then validated by comparing their results with test results and used in a parametric study. Both experimental and finite element analysis results showed that the current design equations are not suitable for combined shear and bending capacities of LSBs. Hence improved design equations are proposed for the capacities of LSBs subject to combined shear and bending actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of ex vivo blood production is limited by both biological and engineering challenges. From an engineering perspective, these challenges include the significant volumes required to generate even a single unit of a blood product, as well as the correspondingly high protein consumption required for such large volume cultures. Membrane bioreactors, such as hollow fiber bioreactors (HFBRs), enable cell densities approximately 100-fold greater than traditional culture systems and therefore may enable a significant reduction in culture working volumes. As cultured cells, and larger molecules, are retained within a fraction of the system volume, via a semipermeable membrane it may be possible to reduce protein consumption by limiting supplementation to only this fraction. Typically, HFBRs are complex perfusion systems having total volumes incompatible with bench scale screening and optimization of stem cell-based cultures. In this article we describe the use of a simplified HFBR system to assess the feasibility of this technology to produce blood products from umbilical cord blood-derived CD34+ hematopoietic stem progenitor cells (HSPCs). Unlike conventional HFBR systems used for protein manufacture, where cells are cultured in the extracapillary space, we have cultured cells in the intracapillary space, which is likely more compatible with the large-scale production of blood cell suspension cultures. Using this platform we direct HSPCs down the myeloid lineage, while targeting a 100-fold increase in cell density and the use of protein-free bulk medium. Our results demonstrate the potential of this system to deliver high cell densities, even in the absence of protein supplementation of the bulk medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed study of the Bjurbole fusion crust using scanning electron microscopy (SEM) and energy dispersive analysis (EDS) shows that filamentary crystals and ablation spheres may form on the meteoroid surface. Filamentary crystals, hollow spheres, and porous regions of the surface point to a period of intense vapor phase activity during atmospheric passage. Filamentary crystals can be divided into three categories on the basis of bulk composition and morphology. Two types of filamentary crystals are vapor phase condensation products formed during atmospheric entry of the meteoroid. The other type forms by the interaction of seawater with the fusion surface. The density and composition of ablation spheres varies with the flight orientation of the meteorite. The size range and composition of iron-nickel spheres on the surface of Bjurbole are similar to spheres collected in the stratosphere. A comparison of stratospheric dust collections with meteorite surfaces may provide further insight into the mechanisms of meteoroid entry into planetary atmospheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures. METHODOLOGY/PRINCIPAL FINDINGS: The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability. CONCLUSIONS/SIGNIFICANCE: In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process. It is commonly used as flexural members in residential, industrial and commercial buildings. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Test results have shown that the shear capacity of LSBs can be reduced considerably by the inclusion of web openings. A cost effective method of eliminating the detrimental effects of a large web opening is to attach suitable stiffeners around the web openings of LSBs. A detailed experimental study consisting of 17 shear tests was therefore undertaken to investigate the shear behaviour and strength of LSBs with stiffened circular web openings. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LSBs using a number of screw-fastening arrangements in order to develop a suitable stiffening arrangement for LSBs. Simply supported test specimens of LSBs with an aspect ratio of 1.5 were loaded at mid-span until failure. This paper presents the details of this experimental study of LSBs with stiffened web openings, and the results of their shear capacities and associated behavioural characteristics. Suitable screw-fastened plate stiffener arrangements have been recommended in order to restore the original shear capacity of LSBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a simultaneous cold-forming and dual electric resistance welding process. It is commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. A cost effective method of eliminating the detrimental effects of a large web opening is to attach suitable stiffeners around the web openings of LSBs. Experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs with circular web openings reinforced using plate, stud, transverse and sleeve stiffeners with varying sizes and thicknesses. Both welding and varying screw-fastening arrangements were used to attach these stiffeners to the web of LSBs. Finite element models of LSBs with stiffened web openings in shear were developed to simulate their shear behaviour and strength of LSBs. They were then validated by comparing the results with experimental test results and used in a detailed parametric study. These studies have shown that plate stiffeners were the most suitable, however, their use based on the current American standards was found to be inadequate. Suitable screw-fastened plate stiffener arrangements with optimum thicknesses have been proposed for LSBs with web openings to restore their original shear capacity. This paper presents the details of the numerical study and the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently the use of the carbon fibre reinforced polymer(CFRP) composites appears to be an excellent solution for retrofitting and strengthening of concrete and steel structures because of its superior physical and mechanical properties through the integration of other materials. However, the overall functionality and durability under various environmental conditions of the system has not yet been well documented. This paper reviews the environmental durability of CFRP strengthened system that has received only small coverage in previous review articles. Future research topics have also been indentified, such as durability of steel circular hollow section under various environmental conditions subjected to bending. Environment of interests are moisture/solution, alkalinity, creep/relaxation, fatigue, fire, thermal effects (including freeze-thaw), and ultraviolet exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Extra corporeal membrane oxygenation (ECMO) is a complex rescue therapy used to provide cardiac and/or respiratory support for critically ill patients who have failed maximal conventional medical management. ECMO is based on a modified cardiopulmonary bypass (CPB) circuit, and can provide cardiopulmonary support for up-to several months. It can be used in a veno venous configuration for isolated respiratory failure, (VV-ECMO), or in a veno arterial configuration (VA-ECMO) where support is necessary for cardiac +/- respiratory failure. The ECMO circuit consists of five main components: large bore cannulae (access cannulae) for drainage of the venous system, and return cannulae to either the venous (in VV-ECMO) or arterial (in VA ECMO) system. An oxygenator, with a vast surface area of hollow filaments, allows addition of oxygen and removal of carbon dioxide; a centrifugal blood pump allows propulsion of blood through the circuit at upto 10 L/minute; a control module and a thermoregulatory unit, which allows for exact temperature control of the extra corporeal blood. Methods: The first successful use of ECMO for ARDS in adults occurred in 1972, and its use has become more commonplace over the last 30 years, supported by the improvement in design and biocompatibility of the equipment, which has reduced the morbidity associated with this modality. Whilst the use of ECMO in neonatal population has been supported by numerous studies, the evidence upon which ECMO was integrated into adult practice was substantially less robust. Results: Recent data, including the CESAR study (Conventional Ventilatory Support versus Extra corporeal membrane oxygenation for Severe Respiratory failure) has added a degree of evidence to the role of ECMO in such a patient population. The CESAR study analysed 180 patients, and confirmed that ECMO was associated with an improved rate of survival. More recently, ECMO has been utilized in numerous situations within the critical care area, including support in high-risk percutaneous interventions in cardiac catheter lab; the operating room, emergency department, as well in specialized inter-hospital retrieval services. The increased understanding of the risk:benefit profile of ECMO, along with a reduction in morbidity associated with its use will doubtless lead to a substantial rise in the utilisation of this modality. As with all extra-corporeal circuits, ECMO opposes the basic premises of the mammalian inflammation and coagulation cascade where blood comes into foreign circulation, both these cascades are activated. Anti-coagulation is readily dealt with through use of agents such as heparin, but the inflammatory excess, whilst less macroscopically obvious, continues un-abated. Platelet consumption and neutrophil activation occur rapidly, and the clinician is faced with balancing the need of anticoagulation for the circuit, against haemostasis in an acutely bleeding patient. Alterations in pharmacokinetics may result in inadequate levels of disease modifying therapeutics, such as antibiotics, hence paradoxically delaying recovery from conditions such as pneumonia. Key elements of nutrition and the innate immune system maysimilarly be affected. Summary: This presentation will discuss the basic features of ECMO to the nonspecialist, and review the clinical conundrum faced by the team treating these most complex cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characterization of the combustion products released during the burning of commonly used engineering metallic materials may aid in material selection and risk assessment for the design of oxygen systems. The characterization of combustion products in regards to size distribution and morphology gives useful information for systems addressing fire detection. Aluminum rods (3.2-mm diameter cylinders) were vertically mounted inside a combustion chamber and ignited in pressurized oxygen by resistively heating an aluminum/palladium igniter wire attached to the bottom of the test sample. This paper describes the experimental work conducted to establish the particle size distribution and morphology of the resultant combustion products collected after the burning was completed and subsequently analyzed. In general, the combustion products consisted of a re-solidified oxidized slag and many small hollow spheres of size ranging from about 500 nm to 1000 µm in diameter, surfaced with quenched dendritic and grain-like structures. The combustion products were characterized using optical and scanning electron microscopy.