207 resultados para guideline generation
Resumo:
Taka ‘i fonua mahu is a Tongan proverb, which means: "Going about or living in a fruitful land". This thesis analyses the experiences and impacts on migration on being Tongan, particularly Tongan youth in an adopted fruitful land, South East Queensland. The thesis argues that being Tongan in Tonga, has new meaning in the diaspora because of remittances, job prospects, educational opportunity, adapting to a multicultural society, and social justice. These issues are revealed by comparisons made with the experiences of the first generation Tongan migrants, and second generation Tongan migrants, as well as those in New Zealand and America. It argues that the Church, the family and kainga (extended family) impact on the anga fakatonga (Tongan way) and the essence of community as experienced by the first and second generation Tongan migrants. The framework for this analysis is a study of transnationalism, and being Tongan as it is maintained and changed in the diaspora.
Resumo:
BACKGROUND: Numerous strategies are available to prevent surgical site infections in hip arthroplasty, but there is no consensus on which might be the best. This study examined infection prevention strategies currently recommended for patients undergoing hip arthroplasty. METHODS: Four clinical guidelines on infection prevention/orthopedics were reviewed. Infection control practitioners, infectious disease physicians, and orthopedic surgeons were consulted through structured interviews and an online survey. Strategies were classified as "highly important" if they were recommended by at least one guideline and ranked as significantly or critically important by >/=75% of the experts. RESULTS: The guideline review yielded 28 infection prevention measures, with 7 identified by experts as being highly important in this context: antibiotic prophylaxis, antiseptic skin preparation of patients, hand/forearm antisepsis by surgical staff, sterile gowns/surgical attire, ultraclean/laminar air operating theatres, antibiotic-impregnated cement, and surveillance. Controversial measures included antibiotic-impregnated cement and, considering recent literature, laminar air operating theatres. CONCLUSIONS: Some of these measures may already be accepted as routine clinical practice, whereas others are controversial. Whether these practices should be continued for this patient group will be informed by modeling the cost-effectiveness of infection prevention strategies. This will allow predictions of long-term health and cost outcomes and thus inform decisions on how to best use scarce health care resources for infection control.
Resumo:
The control paradigms of the distributed generation (DG) sources in the smart grid are realised by either utilising virtual power plant (VPP) or by employing MicroGrid structures. Both VPP and MicroGrid are presented with the problem of control of power flow between their comprising DG sources. This study depicts this issue for VPP and proposes a novel and improved universal active and reactive power flow controllers for three-phase pulse width modulated voltage source inverters (PWM-VSI) operating in the VPP environment. The proposed controller takes into account all cases of R-X relationship, thus allowing it to function in systems operating at high, medium (MV) and low-voltage (LV) levels. Also proposed control scheme for the first time in an inverter control takes into account the capacitance of the transmission line which is an important factor to accurately represent medium length transmission lines. This allows the proposed control scheme to be applied in VPP structures, where DG sources can operate at MV LV levels over a short/medium length transmission line. The authors also conducted small signal stability analysis of the proposed controller and compared it against the small signal study of the existing controllers.
Resumo:
Next Generation Sequencing (NGS) has revolutionised molec- ular biology, allowing routine clinical sequencing. NGS data consists of short sequence reads, given context through downstream assembly and annotation, a process requiring reads consistent with the assumed species or species group. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans, with some strains exhibiting antibiotic resistance. Here we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from other pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.
Resumo:
Whilst alcohol is a common feature of many social gatherings, there are numerous immediate and long-term health and social harms associated with its abuse. Alcohol consumption is the world’s third largest risk factor for disease and disability with almost 4% of all deaths worldwide attributed to alcohol. Not surprisingly, alcohol use and binge drinking by young people is of particular concern with Australian data reporting that 39% of young people (18-19yrs) admitted drinking at least weekly and 32% drank to levels that put them at risk of alcohol-related harm. The growing market penetration and connectivity of smartphones may be an opportunities for innovation in promoting health-related self-management of substance use. However, little is known about how best to harness and optimise this technology for health-related intervention and behaviour change. This paper explores the utility and interface of smartphone technology as a health intervention tool to monitor and moderate alcohol use. A review of the psychological health applications of this technology will be presented along with the findings of a series of focus groups, surveys and behavioural field trials of several drink-monitoring applications. Qualitative and quantitative data will be presented on the perceptions, preferences and utility of the design, usability and functionality of smartphone apps to monitoring and moderate alcohol use. How these findings have shaped the development and evolution of the OnTrack app will be specifically discussed, along with future directions and applications of this technology in health intervention, prevention and promotion.
Resumo:
We isolated and characterized 21 microsatellite loci in the vulnerable and iconic Australian lungfish, Neoceratodus forsteri. Loci were screened across eight individuals from the Burnett River and 40 individuals from the Pine River. Genetic diversity was low with between one and six alleles per locus within populations and a maximum expected heterozygosity of 0.774. These loci will now be available to assess effective population sizes and genetic structure in N. forsteri across its natural range in South East Queensland, Australia.
Resumo:
Network reconfiguration after complete blackout of a power system is an essential step for power system restoration. A new node importance evaluation method is presented based on the concept of regret, and maximisation of the average importance of a path is employed as the objective of finding the optimal restoration path. Then, a two-stage method is presented to optimise the network reconfiguration strategy. Specifically, the restoration sequence of generating units is first optimised so as to maximise the restored generation capacity, then the optimal restoration path is selected to restore the generating nodes concerned and the issues of selecting a serial or parallel restoration mode and the reconnecting failure of a transmission line are next considered. Both the restoration path selection and skeleton-network determination are implemented together in the proposed method, which overcomes the shortcoming of separate decision-making in the existing methods. Finally, the New England 10-unit 39-bus power system and the Guangzhou power system in South China are employed to demonstrate the basic features of the proposed method.
Resumo:
An alternative approach to digital PWM generation using an adder rather than a counter is presented. This offers several advantages. The resolution and gain of the pulse width modulator remain constant regardless of the module clock frequency and PWM output frequency. The PWM resolution also becomes fixed at the register width. Even at high PWM frequencies, the resolution remains high when averaged over a number of PWM cycles. An inherent dithering of the PWM waveform introduced over successive cycles blurs the switching spectra without distorting the modulating waveform. The technique also lends itself to easily generating several phase shifted PWM waveforms suitable for multilevel converter modulation.
Resumo:
This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.
Resumo:
This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.
Resumo:
Electricity is the cornerstone of modern life. It is essential to economic stability and growth, jobs and improved living standards. Electricity is also the fundamental ingredient for a dignified life; it is the source of such basic human requirements as cooked food, a comfortable living temperature and essential health care. For these reasons, it is unimaginable that today's economies could function without electricity and the modern energy services that it delivers. Somewhat ironically, however, the current approach to electricity generation also contributes to two of the gravest and most persistent problems threatening the livelihood of humans. These problems are anthropogenic climate change and sustained human poverty. To address these challenges, the global electricity sector must reduce its reliance on fossil fuel sources. In this context, the object of this research is twofold. Initially it is to consider the design of the Renewable Energy (Electricity) Act 2000 (Cth) (Renewable Electricity Act), which represents Australia's primary regulatory approach to increase the production of renewable sourced electricity. This analysis is conducted by reference to the regulatory models that exist in Germany and Great Britain. Within this context, this thesis then evaluates whether the Renewable Electricity Act is designed effectively to contribute to a more sustainable and dignified electricity generation sector in Australia. On the basis of the appraisal of the Renewable Electricity Act, this thesis contends that while certain aspects of the regulatory regime have merit, ultimately its design does not represent an effective and coherent regulatory approach to increase the production of renewable sourced electricity. In this regard, this thesis proposes a number of recommendations to reform the existing regime. These recommendations are not intended to provide instantaneous or simple solutions to the current regulatory regime. Instead, the purpose of these recommendations is to establish the legal foundations for an effective regulatory regime that is designed to increase the production of renewable sourced electricity in Australia in order to contribute to a more sustainable and dignified approach to electricity production.
Resumo:
The cyclic voltammetry behaviour of gold in aqueous media is often regarded in very simple terms as a combination of two distinct processes, double layer charging/discharging and monolayer oxide formation/removal. This view is questioned here on the basis of both the present results and earlier independent data by other authors. It was demonstrated in the present case that both severe cathodization or thermal pretreatment of polycrystalline gold in acid solution resulted in the appearance of substantial Faradaic responses in the double layer region. Such anamolous behaviour, as outlined recently also for other metals, is rationalized in terms of the presence of active metal atoms (which undergo premonolayer oxidation) at the electrode surface. Such behaviour, which is also assumed to correspond to that of active sites on conventional gold surfaces, is assumed to be of vital importance in electrocatalysis; in many instances the latter process is also quite marked in the double layer region.
Resumo:
Unlike the case with other divalent transition metal M\[TCNQ](2)(H(2)O)(2) (M = Fe, Co, Ni) analogues, the electrochemically induced solid-solid phase interconversion of TCNQ microcrystals (TCNQ = 7,7,8,8-tetracyanoquinodimethane) to Mn\[TCNQ](2)(H(2)O)(2) occurs via two voltammetrically distinct, time dependent processes that generate the coordination polymer in nanofiber or rod-like morphologies. Careful manipulation of the voltammetric scan rate, electrolysis time, Mn(2+)((aq)) concentration, and the method of electrode modification with solid TCNQ allows selective generation of either morphology. Detailed ex situ spectroscopic (IR, Raman), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) characterization clearly establish that differences in the electrochemically synthesized Mn-TCNQ material are confined to morphology. Generation of the nanofiber form is proposed to take place rapidly via formation and reduction of a Mn-stabilized anionic dimer intermediate, \[(Mn(2+))(TCNQ-TCNQ)(2)(*-)], formed as a result of radical-substrate coupling between TCNQ(*-) and neutral TCNQ, accompanied by ingress of Mn(2+) ions from the aqueous solution at the triple phase TCNQ/electrode/electrolyte boundary. In contrast, formation of the nanorod form is much slower and is postulated to arise from disproportionation of the \[(Mn(2+))(TCNQ-TCNQ)(*-)(2)] intermediate. Thus, identification of the time dependent pathways via the solid-solid state electrochemical approach allows the crystal size of the Mn\[TCNQ](2)(H(2)O)(2) material to be tuned and provides new mechanistic insights into the formation of different morphologies.
Resumo:
This paper presents a model for the generation of a MAC tag using a stream cipher. The input message is used indirectly to control segments of the keystream that form the MAC tag. Several recent proposals can be considered as instances of this general model, as they all perform message accumulation in this way. However, they use slightly different processes in the message preparation and finalisation phases. We examine the security of this model for different options and against different types of attack, and conclude that the indirect injection model can be used to generate MAC tags securely for certain combinations of options. Careful consideration is required at the design stage to avoid combinations of options that result in susceptibility to forgery attacks. Additionally, some implementations may be vulnerable to side-channel attacks if used in Authenticated Encryption (AE) algorithms. We give design recommendations to provide resistance to these attacks for proposals following this model.