166 resultados para fractional urea clearance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of lines is a standard method for advancing the solution of partial differential equations (PDEs) in time. In one sense, the method applies equally well to space-fractional PDEs as it does to integer-order PDEs. However, there is a significant challenge when solving space-fractional PDEs in this way, owing to the non-local nature of the fractional derivatives. Each equation in the resulting semi-discrete system involves contributions from every spatial node in the domain. This has important consequences for the efficiency of the numerical solver, especially when the system is large. First, the Jacobian matrix of the system is dense, and hence methods that avoid the need to form and factorise this matrix are preferred. Second, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. In this paper, we show how an effective preconditioner is essential for improving the efficiency of the method of lines for solving a quite general two-sided, nonlinear space-fractional diffusion equation. A key contribution is to show, how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a two-dimensional space-fractional reaction diffusion equation with a fractional Laplacian operator and homogeneous Neumann boundary conditions. The finite volume method is used with the matrix transfer technique of Ilić et al. (2006) to discretise in space, yielding a system of equations that requires the action of a matrix function to solve at each timestep. Rather than form this matrix function explicitly, we use Krylov subspace techniques to approximate the action of this matrix function. Specifically, we apply the Lanczos method, after a suitable transformation of the problem to recover symmetry. To improve the convergence of this method, we utilise a preconditioner that deflates the smallest eigenvalues from the spectrum. We demonstrate the efficiency of our approach for a fractional Fisher’s equation on the unit disk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider the numerical simulation of a fractional mathematical model of epidermal wound healing (FMM-EWH), which is based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in the advection and diffusion terms belong to the intervals (0, 1) or (1, 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of Riemann-Liouville and Grünwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider a space fractional advection–dispersion equation. The equation is obtained from the standard advection–diffusion equation by replacing the first- and second-order space derivatives by the Riesz fractional derivatives of order β1 ∈ (0, 1) and β2 ∈ (1, 2], respectively. The fractional advection and dispersion terms are approximated by using two fractional centred difference schemes. A new weighted Riesz fractional finite-difference approximation scheme is proposed. When the weighting factor θ equals 12, a second-order accuracy scheme is obtained. The stability, consistency and convergence of the numerical approximation scheme are discussed. A numerical example is given to show that the numerical results are in good agreement with our theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional mathematical models represent a new approach to modelling complex spatial problems in which there is heterogeneity at many spatial and temporal scales. In this paper, a two-dimensional fractional Fitzhugh-Nagumo-monodomain model with zero Dirichlet boundary conditions is considered. The model consists of a coupled space fractional diffusion equation (SFDE) and an ordinary differential equation. For the SFDE, we first consider the numerical solution of the Riesz fractional nonlinear reaction-diffusion model and compare it to the solution of a fractional in space nonlinear reaction-diffusion model. We present two novel numerical methods for the two-dimensional fractional Fitzhugh-Nagumo-monodomain model using the shifted Grunwald-Letnikov method and the matrix transform method, respectively. Finally, some numerical examples are given to exhibit the consistency of our computational solution methodologies. The numerical results demonstrate the effectiveness of the methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Texture enhancement is an important component of image processing, with extensive application in science and engineering. The quality of medical images, quantified using the texture of the images, plays a significant role in the routine diagnosis performed by medical practitioners. Previously, image texture enhancement was performed using classical integral order differential mask operators. Recently, first order fractional differential operators were implemented to enhance images. Experiments conclude that the use of the fractional differential not only maintains the low frequency contour features in the smooth areas of the image, but also nonlinearly enhances edges and textures corresponding to high-frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we applied the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other fractional differential operators, our new algorithms provide higher signal to noise values, which leads to superior image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport processes within heterogeneous media may exhibit non-classical diffusion or dispersion; that is, not adequately described by the classical theory of Brownian motion and Fick's law. We consider a space fractional advection-dispersion equation based on a fractional Fick's law. The equation involves the Riemann-Liouville fractional derivative which arises from assuming that particles may make large jumps. Finite difference methods for solving this equation have been proposed by Meerschaert and Tadjeran. In the variable coefficient case, the product rule is first applied, and then the Riemann-Liouville fractional derivatives are discretised using standard and shifted Grunwald formulas, depending on the fractional order. In this work, we consider a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Grunwald formulas are used to discretise the fractional derivatives at control volume faces. We compare the two methods for several case studies from the literature, highlighting the convenience of the finite volume approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the spectral approximations are used to compute the fractional integral and the Caputo derivative. The effective recursive formulae based on the Legendre, Chebyshev and Jacobi polynomials are developed to approximate the fractional integral. And the succinct scheme for approximating the Caputo derivative is also derived. The collocation method is proposed to solve the fractional initial value problems and boundary value problems. Numerical examples are also provided to illustrate the effectiveness of the derived methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rayleigh–Stokes problems have in recent years received much attention due to their importance in physics. In this article, we focus on the variable-order Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative. Implicit and explicit numerical methods are developed to solve the problem. The convergence, stability of the numerical methods and solvability of the implicit numerical method are discussed via Fourier analysis. Moreover, a numerical example is given and the results support the effectiveness of the theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional partial differential equations have been applied to many problems in physics, finance, and engineering. Numerical methods and error estimates of these equations are currently a very active area of research. In this paper we consider a fractional diffusionwave equation with damping. We derive the analytical solution for the equation using the method of separation of variables. An implicit difference approximation is constructed. Stability and convergence are proved by the energy method. Finally, two numerical examples are presented to show the effectiveness of this approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The space and time fractional Bloch–Torrey equation (ST-FBTE) has been used to study anomalous diffusion in the human brain. Numerical methods for solving ST-FBTE in three-dimensions are computationally demanding. In this paper, we propose a computationally effective fractional alternating direction method (FADM) to overcome this problem. We consider ST-FBTE on a finite domain where the time and space derivatives are replaced by the Caputo–Djrbashian and the sequential Riesz fractional derivatives, respectively. The stability and convergence properties of the FADM are discussed. Finally, some numerical results for ST-FBTE are given to confirm our theoretical findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: UC is a disease of the entire urothelium, characterized by multiplicity and multifocality. The clonal relationship among multiple UCs has implications regarding adjuvant chemotherapy. It has been investigated in studies of chromosomal alteration and single gene mutation. However, these genetic changes can occur in unrelated tumors under similar carcinogenic selection pressures. Tumors with high MSI have numerous DNA mutations, of which many provide no selection benefit. While these tumors represent an ideal model for studying UC clonality, their low frequency has prevented their previous investigation. Materials and Methods: We investigated 32 upper and lower urinary tract UCs with high MSI and 4 nonUC primary cancers in 9 patients. We used the high frequency and specificity of individual DNA mutations in these tumors (MSI at 17 loci) and the early timing of epigenetic events (methylation of 7 gene promoters) to investigate tumor clonality. Results: Molecular alterations varied among tumors from different primary organs but they appeared related in the UCs of all 9 patients. While 7 patients had a high degree of concordance among UCs, in 2 the UCs shared only a few similar alterations. Genetic and epigenetic abnormalities were frequently found in normal urothelial samples. Conclusions: Multiple UCs in each patient appeared to arise from a single clone. The molecular order of tumor development varied from the timing of clinical presentation and suggested that residual malignant cells persist in the urinary tract despite apparent curative surgery. These cells lead to subsequent tumor relapse and new methods are required to detect and eradicate them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models have successfully been used to model anomalous diffusion and spatial heterogeneity in different physical contexts. In this paper, we develop a fractional model based on the Fisher-Kolmogoroff equation and analyse it for its wavespeed properties, attempting to relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The objective of the study was to assess the bioequivalence of two tablet formulations of capecitabine and to explore the effect of age, gender, body surface area and creatinine clearance on the systemic exposure to capecitabine and its metabolites. Methods: The study was designed as an open, randomized two-way crossover trial. A single oral dose of 2000 mg capecitabine was administered on two separate days to 25 patients with solid tumors. On one day, the patients received four 500-mg tablets of formulation B (test formulation) and on the other day, four 500-mg tablets of formulation A (reference formulation). The washout period between the two administrations was between 2 and 8 days. After each administration, serial blood and urine samples were collected for up to 12 and 24 h, respectively. Unchanged capecitabine and its metabolites were determined in plasma using LC/MS-MS and in urine by NMRS. Results: Based on the primary pharmacokinetic parameter, AUC(0-∞) of 5'-DFUR, equivalence was concluded for the two formulations, since the 90% confidence interval of the estimate of formulation B relative to formulation A of 97% to 107% was within the acceptance region 80% to 125%. There was no clinically significant difference between the t(max) for the two formulations (median 2.1 versus 2.0 h). The estimate for C(max) was 111% for formulation B compared to formulation A and the 90% confidence interval of 95% to 136% was within the reference region 70% to 143%. Overall, these results suggest no relevant difference between the two formulations regarding the extent to which 5'-DFUR reached the systemic circulation and the rate at which 5'-DFUR appeared in the systemic circulation. The overall urinary excretions were 86.0% and 86.5% of the dose, respectively, and the proportion recovered as each metabolite was similar for the two formulations. The majority of the dose was excreted as FBAL (61.5% and 60.3%), all other chemical species making a minor contribution. Univariate and multivariate regression analysis to explore the influence of age, gender, body surface area and creatinine clearance on the log-transformed pharmacokinetic parameters AUC(0-∞) and C(max) of capecitabine and its metabolites revealed no clinically significant effects. The only statistically significant results were obtained for AUC(0-∞) and C(max) of intact drug and for C(max) of FBAL, which were higher in females than in males. Conclusion: The bioavailability of 5'-DFUR in the systemic circulation was practically identical after administration of the two tablet formulations. Therefore, the two formulations can be regarded as bioequivalent. The variables investigated (age, gender, body surface area, and creatinine clearance) had no clinically significant effect on the pharmacokinetics of capecitabine or its metabolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report major and trace element composition, Sr–Nd isotopic and seismological data for a picrite–basalt–rhyolite suite from the northern Tarim uplift (NTU), northwest China. The samples were recovered from 13 boreholes at depths between 5,166 and 6,333 m. The picritic samples have high MgO (14.5–16.8 wt%, volatiles included) enriched in incompatible element and have high 87Sr/86Sr and low 143Nd/144Nd isotopic ratios (εNd (t) = −5.3; Sri = 0.707), resembling the Karoo high-Ti picrites. All the basaltic samples are enriched in TiO2 (2.1–3.2 wt%, volatiles free), have high FeOt abundances (11.27–15.75 wt%, volatiles free), are enriched in incompatible elements and have high Sr and low Nd isotopic ratios (Sri = 0.7049–0.7065; εNd (t) = −4.1 to −0.4). High Nb/La ratios (0.91–1.34) of basalts attest that they are mantle-derived magma with negligible crustal contamination. The rhyolite samples can be subdivided into two coeval groups with overlapping U–Pb zircon ages between 291 ± 4 and 272 ± 2 Ma. Group 1 rhyolites are enriched in Nb and Ta, have similar Nb/La, Nb/U, and Sr–Nd isotopic compositions to the associated basalts, implying that they are formed by fractional crystallization of the basalts. Group 2 rhyolites are depleted in Nb and Ta, have low Nb/La ratios, and have very high Sr and low Nd isotopic ratios, implying that crustal materials have been extensively, if not exclusively, involved in their source. The picrite–basalt–rhyolite suite from the NTU, together with Permian volcanic rocks from elsewhere Tarim basin, constitute a Large Igneous Province (LIP) that is characterized by large areal extent, rapid eruption, OIB-type chemical composition, and eruption of high temperature picritic magma. The Early Permian magmatism, which covered an area >300,000 km2, is therefore named the Tarim Flood Basalt.