100 resultados para femur head


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid–interstitial fluid interaction, which depends on tissue permeability, is significant to the strain-rate-dependent mechanical behavior of humeral head (shoulder) cartilage. Due to anatomical and biomechanical similarities to that of the human shoulder, kangaroos present a suitable animal model. Therefore, indentation experiments were conducted on kangaroo shoulder cartilage tissues from low (10−4/s) to moderately high (10−2/s) strain-rates. A porohyperelastic model was developed based on the experimental characterization; and a permeability function that takes into account the effect of strain-rate on permeability (strain-rate-dependent permeability) was introduced into the model to investigate the effect of rate-dependent fluid flow on tissue response. The prediction of the model with the strain-rate-dependent permeability was compared with those of the models using constant permeability and strain-dependent permeability. Compared to the model with constant permeability, the models with strain-dependent and strain-rate-dependent permeability were able to better capture the experimental variation at all strain-rates (p<0.05). Significant differences were not identified between models with strain-dependent and strain-rate-dependent permeability at strain-rate of 5×10−3/s (p=0.179). However, at strain-rate of 10−2/s, the model with strain-rate-dependent permeability was significantly better at capturing the experimental results (p<0.005). The findings thus revealed the significance of rate-dependent fluid flow on tissue behavior at large strain-rates, which provides insights into the mechanical deformation mechanisms of cartilage tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease. Copyright

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: It is common for head and neck patients to be affected by time trend errors as a result of weight loss during a course of radiation treatment. The objective of this planning study was to investigate the impact of weight loss on Volumetric Modulated Arc Therapy (VMAT) as well as Intensity modulated radiation therapy (IMRT) for locally advanced head and neck cancer using automatic co-registration of the CBCT. Methods and Materials: A retrospective analysis of previously treated IMRT plans for 10 patients with locally advanced head and neck cancer patients was done. A VMAT plan was also produced for all patients. We calculated the dose–volume histograms (DVH) indices for spinal cord planning at risk volumes (PRVs), the brainstem PRVs (SC+0.5cm and BS+0.5cm, respectively) as well as mean dose to the parotid glands. Results: The results show that the mean difference in dose to the SC+0.5cm was 1.03% and 1.27% for the IMRT and VMAT plans, respectively. As for dose to the BS+0.5, the percentage difference was 0.63% for the IMRT plans and 0.61% for the VMAT plans. The analysis of the parotid gland doses shows that the percentage change in mean dose to left parotid was -8.0% whereas that of the right parotid was -6.4% for the IMRT treatment plans. In the VMAT plans, the percentages change for the left and the right parotid glands were -6.6% and -6.7% respectively. Conclusions: This study shows a clinically significant impact of weight loss on DVH indices analysed in head and neck organs at risk. It highlights the importance of adaptive radiotherapy in head and neck patients if organ at risk sparing is to be maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous tumour type which necessitates multiple invitro models to attain an appreciation of its multiple subtypes. The phenomenon of epithelial-mesenchymal transition (EMT) isimportant to the development of a metastatic cancer cell phenotype being relevant to the ability of cancer cells to intravasate intovasculature and to invade tissues. The role of EMT in human papilloma virus (HPV) positive HNSCC is not well understood. Thispaper aims to characterize seven HNSCC cell lines (FaDu, SCC-25, SCC-15, CAL27, RPMI2650) including two new HPV-16positive HNSCC cell lines (UD-SCC2, 93-VU-147T) for their epithelial and mesenchymal properties. Materials and methods: A panel of HNSCC cell lines from multiple head and neck anatomical sites were profiled for basalexpression of epithelial and mesenchymal characteristics at mRNA, protein and functional levels (proliferative, migratory andinvasive properties). Furthermore, 3D spheroid forming capabilities were investigated. Results: We found that the HPV-16 positive cell line, in particular UD-SCC2 demonstrated a more invasive and mesenchymalphenotype at the molecular and functional levels suggesting HPV infection may mediate some of these cellular properties.Moreover, HPV-negative cell lines were not strictly epithelial presenting with a dynamic range of expression. Conclusions: This study presents the molecular and phenotypic diversity of HNSCC cell lines. It highlights the need formore studies in this field and a scoring system where HNSCC cell lines are ranked according to their respective epithelial andmesenchymal nature. This data will be useful to anyone modelling HNSCC behaviour, providing a molecular context which willenable them to decipher cell phenotypes and to develop therapies which block EMT progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head and neck cancer patients often present with advanced metastatic disease resulting in a poor 5-year survival. Therefore, there is a need for non-invasive diagnostic tools that could complement conventional imaging to inform clinicians of patient outcomes and treatment responses. A liquid biopsy addresses this unmet clinical need; a simple peripheral blood draw could provide information about the disseminated disease in terms of circulating tumor cells and circulating tumor DNA. Moreover, detectable tumor DNA in the saliva of head and neck cancer patients could signify the early signs of the disease and present an opportunity for clinical intervention. This review provides an overview of the current literature with regard to the feasibility of such a test in the head and neck cancer field and highlights the need for such a test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose This study evaluated the impact of a daily and weekly image-guided radiotherapy protocols in reducing setup errors and setting of appropriate margins in head and neck cancer patients. Materials and methods Interfraction and systematic shifts for the hypothetical day 1–3 plus weekly imaging were extrapolated from daily imaging data from 31 patients (964 cone beam computed tomography (CBCT) scans). In addition, residual setup errors were calculated by taking the average shifts in each direction for each patient based on the first three shifts and were presumed to represent systematic setup error. The clinical target volume (CTV) to planning target volume (PTV) margins were calculated using van Herk formula and analysed for each protocol. Results The mean interfraction shifts for daily imaging were 0·8, 0·3 and 0·5 mm in the S-I (superior-inferior), L-R (left-right) and A-P (anterior-posterior) direction, respectively. On the other hand the mean shifts for day 1–3 plus weekly imaging were 0·9, 1·8 and 0·5 mm in the S-I, L-R and A-P direction, respectively. The mean day 1–3 residual shifts were 1·5, 2·1 and 0·7 mm in the S-I, L-R and A-P direction, respectively. No significant difference was found in the mean setup error for the daily and hypothetical day 1–3 plus weekly protocol. However, the calculated CTV to PTV margins for the daily interfraction imaging data were 1·6, 3·8 and 1·4 mm in the S-I, L-R and A-P directions, respectively. Hypothetical day 1–3 plus weekly resulted in CTV–PTV margins of 5, 4·2 and 5 mm in the S-I, L-R and A-P direction. Conclusions The results of this study show that a daily CBCT protocol reduces setup errors and allows setup margin reduction in head and neck radiotherapy compared to a weekly imaging protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Forward head postures (FHP) are proposed to adversely load cervical spine structures. Neck muscles provide support for the neck, and thus an imbalance in neck muscle performance could potentially contribute to the development of FHP. Previous studies have not considered the interaction of multiple muscle groups with regard to postural orientation. Given the interdependence of muscles along the cervical spine for optimal orientation and physical support of the vertebral column, the performance of a single muscle group may not accurately reflect the coordinated ability of the muscles to maintain a neutral neck posture. Purpose The purpose of this study was to investigate the relationship between FHP and the balance between the cervical extensor and flexor muscle groups in healthy individuals. We hypothesised that the magnitude of FHP would be associated with the strength and endurance performance ratios between the cervical extensor and flexor muscle groups. Methods Twenty male and 24 female volunteers were photographed in the sagittal plane wearing surface markers. The FHP of each participant was measured via the tragus-sternum marker distance over two conditions: (1)in relaxed standing and (2)during a sustained sitting task. Maximal strength (Nm) and endurance (s) performance of the extensor and flexor muscle groups were recorded at the upper (craniocervical flexion/extension (CCF/CCE)) and lower (cervicothoracic flexion/extension (CTF/CTE)) cervical regions. Muscle performance measures were expressed as extension:flexion ratios and their relation to FHP evaluated. A stepwise multiple regression analysis using backward elimination was utilised to examine the relationship between the postural measures and the muscle performance ratio measures. Separate models were used for the two different postural conditions (standing, sustained sitting). Gender was included as a constant correction factor in all regression models. Where gender was a significant variable in the model, analyses were repeated separately for males and females. Results Greater FHP in standing was significantly associated with reduced proportional CTE to CCF strength in females (R2 = 0.21, P = 0.03) and greater proportional CTE to CTF strength in males (R2 = 0.23, P = 0.03). A greater drift into FHP during sustained sitting was associated with a relative reduction in CCE endurance proportional to CTF endurance in females only (R2 = 0.27, P = 0.017). Conclusion(s) This initial study indicates that the balance in performance between the cervical flexor and extensor muscle groups may impact FHP in healthy individuals. However, the findings were inconsistent across different muscle performance ratios and gender. Larger scale studies are therefore now needed to further clarify the relationship between FHP and muscle performance. Implications The findings suggest that relative performance of the various cervical muscle groups needs to be accounted for when considering postural correction strategies in the clinical setting, as is often recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Forward head posture (FHP) is a commonly reported deviation from a neutral neck posture, usually implying a protracted head position in the sagittal plane. Habitual FHP has been associated with a higher incidence of painful neck disorders, changes in joint mobility and muscle behaviour within the cervicothoracic regions. One factor that has received attention in the literature with regards to FHP is flexibility of the neck. A number of previous studies have previously investigated the relationship between neck flexibility and neck posture under different conditions, but at present this relationship is unclear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head motion (HM) is a well known confound in analyses of functional MRI (fMRI) data. Neuroimaging researchers therefore typically treat HM as a nuisance covariate in their analyses. Even so, it is possible that HM shares a common genetic influence with the trait of interest. Here we investigate the extent to which this relationship is due to shared genetic factors, using HM extracted from resting-state fMRI and maternal and self report measures of Inattention and Hyperactivity-Impulsivity from the Strengths and Weaknesses of ADHD Symptoms and Normal Behaviour (SWAN) scales. Our sample consisted of healthy young adult twins (N = 627 (63% females) including 95 MZ and 144 DZ twin pairs, mean age 22, who had mother-reported SWAN; N = 725 (58% females) including 101 MZ and 156 DZ pairs, mean age 25, with self reported SWAN). This design enabled us to distinguish genetic from environmental factors in the association between head movement and ADHD scales. HM was moderately correlated with maternal reports of Inattention (r = 0.17, p-value = 7.4E-5) and Hyperactivity-Impulsivity (r = 0.16, p-value = 2.9E-4), and these associations were mainly due to pleiotropic genetic factors with genetic correlations [95% CIs] of rg = 0.24 [0.02, 0.43] and rg = 0.23 [0.07, 0.39]. Correlations between self-reports and HM were not significant, due largely to increased measurement error. These results indicate that treating HM as a nuisance covariate in neuroimaging studies of ADHD will likely reduce power to detect between-group effects, as the implicit assumption of independence between HM and Inattention or Hyperactivity-Impulsivity is not warranted. The implications of this finding are problematic for fMRI studies of ADHD, as failing to apply HM correction is known to increase the likelihood of false positives. We discuss two ways to circumvent this problem: censoring the motion contaminated frames of the RS-fMRI scan or explicitly modeling the relationship between HM and Inattention or Hyperactivity-Impulsivity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress- and strain-controlled tests of heat treated high-strength rail steel (Australian Standard AS1085.1) have been performed in order to improve the characterisation of the said material׳s ratcheting and fatigue wear behaviour. The hardness of the rail head material has also been studied and it has been found that hardness reduces considerably below four-millimetres from the rail top surface. Historically, researchers have used test coupons with circular cross-sections to conduct cyclic load tests. Such test coupons, typically five-millimetres in gauge diameter and ten‐millimetres in grip diameter, are usually taken from the rail head sample. When there is considerable variation of material properties over the cross-section it becomes likely that localised properties of the rail material will be missed. In another case from the literature, disks 47 mm in diameter for a twin-disk rolling contact test machine were obtained directly from the rail sample and used to validate ratcheting and rolling contact fatigue wear models. The question arises: How accurate are such tests, especially when large material property gradients exist? In this research paper, the effects of rail sampling location on the ratcheting behaviour of AS1085.1 rail steel were investigated using rectangular-shaped specimens obtained at four different depths to observe their respective cyclic plasticity behaviour. The microstructural features of the test coupons were also analysed, especially the pearlite inter-lamellar spacing which showed strong correlation with both hardness and cyclic plasticity behaviour of the material. This work ultimately provides new data and testing methodology to aid the selection of valid parameters for material constitutive models to better understand rail surface ratcheting and wear.