177 resultados para ethoexperimental neuroscience


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post traumatic stress disorder (PTSD) is a serious medical condition effecting both military and civilian populations. While its etiology remains poorly understood it is characterized by high and prolonged levels of fear responding. One biological unknown is whether individuals expressing high or low conditioned fear memory encode the memory differently and if that difference underlies fear response. In this study we examined cellular mechanisms that underlie high and low conditioned fear behavior by using an advanced intercrossed mouse line (B6D2F1) selected for high and low Pavlovian fear response. A known requirement for consolidation of fear memory, phosphorylated mitogen activated protein kinase (p44/42 (ERK) MAPK (pMAPK)) in the lateral amygdala (LA) is a reliable marker of fear learning-related plasticity. In this study, we asked whether high and low conditioned fear behavior is associated with differential pMAPK expression in the LA and if so, is it due to an increase in neurons expressing pMAPK or increased pMAPK per neuron. To examine this, we quantified pMAPK-expressing neurons in the LA at baseline and following Pavlovian fear conditioning. Results indicate that high fear phenotype mice have more pMAPK-expressing neurons in the LA. This finding suggests that increased endogenous plasticity in the LA may be a component of higher conditioned fear responses and begins to explain at the cellular level how different fear responders encode fear memories. Understanding how high and low fear responders encode fear memory will help identify novel ways in which fear-related illness risk can be better predicted and treated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological factors underlying individual variability in fearfulness and anxiety have important implications for stress-related psychiatric illness including PTSD and major depression. Using an advanced intercross line (AIL) derived from C57BL/6 and DBA/2J mouse strains and behavioral selection over 3 generations, we established two lines exhibiting High or Low fear behavior after fear conditioning. Across the selection generations, the two lines showed clear differences in training and tests for contextual and conditioned fear. Before fear conditioning training, there were no differences between lines in baseline freezing to a novel context. However, after fear conditioning High line mice demonstrated pronounced freezing in a new context suggestive of poor context discrimination. Fear generalization was not restricted to contextual fear. High fear mice froze to a novel acoustic stimulus while freezing in the Low line did not increase over baseline. Enhanced fear learning and generalization are consistent with transgenic and pharmacological disruption of the hypothalamic-pituitary-adrenal axis (HPA-axis) (Brinks, 2009, Thompson, 2004, Kaouane, 2012). To determine whether there were differences in HPA-axis regulation between the lines, morning urine samples were collected to measure basal corticosterone. Levels of secreted corticosterone in the circadian trough were analyzed by corticosterone ELISA. High fear mice were found to have higher basal corticosterone levels than low line animals. Examination of hormonal stress response components by qPCR revealed increased expression of CRH mRNA and decreased mRNA for MR and CRHR1 in hypothalamus of high fear mice. These alterations may contribute to both the behavioral phenotype and higher basal corticosterone in High fear mice. To determine basal brain activity in vivo in High and Low fear mice we used manganese-enhanced magnetic resonance imaging (MEMRI). Analysis revealed a pattern of basal brain activity made up of amygdala, cortical and hippocampal circuits that was elevated in the High line. Ongoing studies also seek to determine the relative balance of excitatory and inhibitory tone in the amygdala and hippocampus and the neuronal structure of its neurons. While these heterogeneous lines are selected on fear memory expression, HPA-axis alterations and differences in hippocampal activity segregate with the behavioral phenotypes. These differences are detectable in a basal state strongly suggesting these are biological traits underlying the behavioral phenotype (Johnson et al, 2011).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emotionally significant memories, especially those induced in conjunction with physical and mental trauma, are frequently retained for an individual’s lifetime. How these memories are organized and encoded within neural networks is a fundamental question. The lateral amygdala (LA) is a key nucleus for acquisition and maintenance of associative emotional memories. We used Pavlovian fear conditioning to study how ‘weaker’ and ‘stronger’ memories are encoded in neural networks of the LA. In Pavlovian fear conditioning a neutral stimulus, in this case a tone, is temporally paired with an aversive unconditioned stimulus (US), such as a foot shock. The previously neutral stimulus becomes a conditioned stimulus (CS) capable of eliciting defensive responses. We used time spent freezing when the CS is presented in a neutral context as a dependent variable measure of memory ‘strength’.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Symmetry is a fundamental property found in both the physical and natural worlds. Bilateral symmetry is also present in the organization of the brain, however the degree to which symmetry is also an organizing principal between and within the key constituent elements of the nervous system, neurons, is not known. We compared and contrasted the structural organization of principal neurons (PN) in the three subnuclei of the lateral amygdala (LA) of the rat and for comparison also from the infralimbic cortex (IL)...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolutionary advantage of humans is in our unique ability to process stories – we have highly evolved ‘narrative organs.’ Through storytelling, vicarious knowledge, even guarded knowledge, is used to help our species to survive. We learn, regardless of whether the story being told is ‘truth’ or ‘fiction.’ This article discusses how humans place themselves in stories, as both observer and participant, to create a ‘neural balance’ or sweet spot that allows them to be immersed in a story without being entirely threatened by it – and how this involvement in story is the formation of empathy – an empathy that is integral to forging a future humanity. It is through empathy, we argue, that stories have the power to save us.