163 resultados para equal channel angular pressing
Resumo:
Neuromuscular electrical stimulation (NMES) has been consistently demonstrated to improve skeletal muscle function in neurological populations with movement disorders, such as poststroke and incomplete spinal cord injury (Vanderthommen and Duchateau, 2007). Recent research has documented that rapid, supraspinal central nervous system reorganisation/neuroplastic mechanisms are also implicated during NMES (Chipchase et al., 2011). Functional neuroimaging studies have shown NMES to activate a network of sub-cortical and cortical brain regions, including the sensorimotor (SMC) and prefrontal (PFC) cortex (Blickenstorfer et al., 2009; Han et al., 2003; Muthalib et al., 2012). A relationship between increase in SMC activation with increasing NMES current intensity up to motor threshold has been previously reported using functional MRI (Smith et al., 2003). However, since clinical neurorehabilitation programmes commonly utilise NMES current intensities above the motor threshold and up to the maximum tolerated current intensity (MTI), limited research has determined the cortical correlates of increasing NMES current intensity at or above MTI (Muthalib et al., 2012). In our previous study (Muthalib et al., 2012), we assessed contralateral PFC activation using 1-channel functional near infrared spectroscopy (fNIRS) during NMES of the elbow flexors by increasing current intensity from motor threshold to greater than MTI and showed a linear relationship between NMES current intensity and the level of PFC activation. However, the relationship between NMES current intensity and activation of the motor cortical network, including SMC and PFC, has not been clarified. Moreover, it is of scientific and clinical relevance to know how NMES affects the central nervous system, especially in comparison to voluntary (VOL) muscle activation. Therefore, the aim of this study was to utilise multi-channel time domain fNIRS to compare SMC and PFC activation between VOL and NMESevoked wrist extension movements.
Resumo:
Capacity of current and future high data rate wireless communications depend significantly on how well changes in the wireless channel are predicted and tracked. Generally, this can be estimated by transmitting known symbols. However, this increases overheads if the channel varies over time. Given today’s bandwidth demand and the increased necessity for mobile wireless devices, the contributions of this research are very significant. This study has developed a novel and efficient channel tracking algorithm that can recursively update the channel estimation for wireless broadband communications reducing overheads, therefore increasing the speed of wireless communication systems.
Resumo:
This paper examines the relationship between a final year tertiary work placement for criminology students at Griffith University in Brisbane and the development of their work self-efficacy. Using a work self-efficacy instrument developed by Professor Joe Raelin at Northeastern University in Boston, a pilot phase in 2006 and a larger study in 2007 investigated the students’ responses across seven self-efficacy factors of learning, problem-solving, teamwork, sensitivity, politics, pressure, and role expectations. Both studies utilised a pre- and post-test and comparisons between these indicated that they believed their abilities to participate constructively in their professional work contexts significantly improved as a result of their placement experience except in the areas of learning, teamwork and sensitivity. This finding will allow us to continue to refine the processes of work placements in order to ensure the integrity of this method for student learning.
Resumo:
Spectrum sensing of multiple primary user channels is a crucial function in cognitive radio networks. In this paper we propose an optimal, sensing resource allocation algorithm for multi-channel cooperative spectrum sensing. The channel target is implemented as an objective and constraint to ensure a pre-determined number of empty channels are detected for secondary user network operations. Based on primary user traffic parameters, we calculate the minimum number of primary user channels that must be sensed to satisfy the channel target. We implement a hybrid sensing structure by grouping secondary user nodes into clusters and assign each cluster to sense a different primary user channels. We then solve the resource allocation problem to find the optimal sensing configuration and node allocation to minimise sensing duration. Simulation results show that the proposed algorithm requires the shortest sensing duration to achieve the channel target compared to existing studies that require long sensing and cannot guarantee the target.
Resumo:
New technologies, in particular the Internet, have transformed journalistic practices in many ways around the world. While a number of studies have investigated how established journalists are dealing with and using new technologies in a number of countries, very little attention has been paid to how student journalists view and use the Internet as a source of news. This study examined the ways in which second and third-year journalism and arts students at the University of Queensland (Australia) get their news, how they use the Internet as a news channel, as well as their perceptions and use of other new technologies. The authors draw on the theoretical frameworks of uses and gratifications, as well as the media richness theory to explore the primary reasons why students use and perceive the Internet as a news channel.
Resumo:
Australia has been populated for more than 40,000 years with Indigenous Australians joined by European settlers only 230 years ago. The first settlers consisted of convicts from more than 28 countries and members of the British army who arrived in 1788 to establish a British penal colony. Mass migration in the nineteenth century with one and a half million immigrants from Europe, principally from the United Kingdom and Ireland (Haines and Shlomowitz, 1992), established the continent as an Anglo society in the Pacific. In the twentieth century immigrants came from many European countries and in the latter decades from many parts of Asia and the Middle East (Collins, 1991, pp.10-13). In the 21st century Australia has an ethnically and culturally diverse population. The original Indigenous population of Australia accounts for approximately 460,000 or 2.5 per cent of the total population (ABS, 2006a). Estimates are that around 4.5m. persons in the population (close to 20 per cent), were born outside Australia with the majority of these arriving from Europe, principally the United Kingdom, and New Zealand (ABS, 2006b). Like many other countries, Australia has a legacy of discrimination and inequality in employment. Propelled by racist ideologies and the male breadwinner ideology, Indigenous Australians, and non-European immigrants, and women were barred from certain jobs and paid less for their work than any white male counterpart. These conditions were legally sanctioned through the industrial relations system and other laws in the nineteenth and first half of the twentieth century. Since the 1960s a dramatic change has occurred in social policy and national legislation and Australia today has an extensive array of laws which forbid employment discrimination on race, ethnicity, gender and many other characteristics, and other approaches which promote proactive organizational plans and actions to achieve equity in employment. This chapter outlines these developments.
Resumo:
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs were commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Due to the unique geometry of LSBs, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSBs. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear and combined actions. However, to date, no investigation has been conducted into the web crippling behaviour and strength of LSB sections. Hence detailed experimental studies were conducted to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 26 web crippling tests was conducted and the results were compared with current AS/NZS 4600 design rules. This comparison showed that AS/NZS 4600 (SA, 2005) design rules are very conservative for LSB sections under EOF and IOF load cases. Suitable design equations have been proposed to determine the web crippling capacity of LSBs based on experimental results. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Many research studies have been carried out to evaluate the behaviour and design of LCBs subject to pure bending actions. However, limited research has been undertaken on the shear behaviour and strength of LCBs. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study based on the validated finite element models. Numerical studies were conducted to investigate the shear buckling and post-buckling behaviour of LCBs. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs. Improved design equations were therefore proposed for the shear strength of LCBs. This paper presents the details of this numerical study of LCBs and the results.
Resumo:
This paper presents the details of experimental studies on the effect of real support conditions on the shear strength of LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. In some applications in the building industry LSBs are used with only one web side plate (WSP) at their supports and are not used with full height web side plates (WSP) at their supports. Past research studies showed that theses real support connections did not provide simply supported conditions. Many studies have been carried out to evaluate the behaviour and design of LSBs with simply supported conditions subject to pure bending and predominant shear actions. To date, however, no investigation has been conducted into the effect of real support conditions on the shear strength of LSBs. Hence detailed experimental studies were undertaken to investigate the shear behaviour and strength of LSBs with real support conditions. A total of 28 experimental tests were conducted as part of the studies. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. It was found that the effect of using one WSP on the shear behaviour of LSB is significant and there is about 25% shear capacity reduction due to the lateral movement of the bottom flange at the supports. Shear capacity of LSB was also found to decrease when full height WSPs were not used. Suitable support connections were developed to improve the shear capacity of LSBs based on test results.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB) subject to web crippling actions (ETF and ITF). Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies were conducted to assess the web crippling behaviour and strengths of LSBs. Twenty eight web crippling tests were conducted and the results were compared with the current AS/NZS 4600[1] and AISI S100 [2]design equations. Comparison of the ultimate web crippling capacities from tests showed that AS/NZS 4600[1] and AISI S100 [2] design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs. Suitable design rules were also developed under the DSM format.
Resumo:
LiteSteel beam (LSB) is a cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It is commonly used as floor joists and bearers in residential, industrial and commercial buildings. Design of the LSB is governed by the Australian cold-formed steel structures code, AS/NZS 4600. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, currently available design equations for common cold-formed sections are not directly applicable to the LSB. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Hence experimental and numerical studies were conducted to assess the combined bending and shear behaviour of LSBs. Finite element models of LSBs were developed to simulate their combined bending and shear behaviour and strength of LSBs. They were then validated by comparing the results with available experimental test results and used in a detailed parametric study. The results from experimental and finite element analyses were compared with current AS/NZS 4600 and AS 4100 design rules. Both experimental and numerical studies show that the AS/NZS 4600 design rule based on circular interaction equation is conservative in predicting the combined bending and shear capacities of LSBs. This paper presents the details of the numerical studies of LSBs and the results. In response to the inadequacies of current approaches to designing LSBs for combined bending and shear, two lower bound design equations are proposed in this paper.
Resumo:
This research has analysed both reciprocity and feedback mechanisms in multi-antenna wireless systems. It has presented the basis of an effective CSI feedback mechanism that efficiently provides the transmitter with the minimum information to allow the accurate knowledge of a rapidly changing channel. The simulations have been conducted using MATLAB to measure the improvement when the channel is estimated at the receiver in a 2 X 2 multi-antenna system and compared to the case of perfect channel knowledge at the receiver.
Resumo:
Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.
Resumo:
Angular distribution of microscopic ion fluxes around nanotubes arranged into a dense ordered pattern on the surface of the substrate is studied by means of multiscale numerical simulation. The Monte Carlo technique was used to show that the ion current density is distributed nonuniformly around the carbon nanotubes arranged into a dense rectangular array. The nonuniformity factor of the ion current flux reaches 7 in dense (5× 1018 m-3) plasmas for a nanotube radius of 25 nm, and tends to 1 at plasma densities below 1× 1017 m-3. The results obtained suggest that the local density of carbon adatoms on the nanotube side surface, at areas facing the adjacent nanotubes of the pattern, can be high enough to lead to the additional wall formation and thus cause the single- to multiwall structural transition, and other as yet unexplained nanoscience phenomena.
Resumo:
The results of theoretical investigations of two-channel waveguide modulator based on Surface Wave (SW) propagation are presented. The structure studied consists of two n-type semiconductor waveguide channels separated from each other by a dielectric gap and coated by a metal. The SW propagates at the semiconductor-metal interface across an external magnetic field which is parallel to the interface. An external dc voltage is applied to the metal surface of one channel to provide a small phase shift between two propagating modes. In a coupled mode approximation, two possible regimes of operation of the structure, namely as a directional coupler and as an electro-optical modulator, are considered. Our results suggest new applications in millimeter and submillimeter wave solid-state electronics and integrated optics.