482 resultados para electronic paper display
Resumo:
The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased.
Resumo:
Introduction Electronic medication administration record (eMAR) systems are promoted as a potential intervention to enhance medication safety in residential aged care facilities (RACFs). The purpose of this study was to conduct an in-practice evaluation of an eMAR being piloted in one Australian RACF before its roll out, and to provide recommendations for system improvements. Methods A multidisciplinary team conducted direct observations of workflow (n=34 hours) in the RACF site and the community pharmacy. Semi-structured interviews (n=5) with RACF staff and the community pharmacist were conducted to investigate their views of the eMAR system. Data were analysed using a grounded theory approach to identify challenges associated with the design of the eMAR system. Results The current eMAR system does not offer an end-to-end solution for medication management. Many steps, including prescribing by doctors and communication with the community pharmacist, are still performed manually using paper charts and fax machines. Five major challenges associated with the design of eMAR system were identified: limited interactivity; inadequate flexibility; problems related to information layout and semantics; the lack of relevant decision support; and system maintenance issues.We suggest recommendations to improve the design of the eMAR system and to optimize existing workflows. Discussion Immediate value can be achieved by improving the system interactivity, reducing inconsistencies in data entry design and offering dedicated organisational support to minimise connectivity issues. Longer-term benefits can be achieved by adding decision support features and establishing system interoperability requirements with stakeholder groups (e.g. community pharmacies) prior to system roll out. In-practice evaluations of technologies like eMAR system have great value in identifying design weaknesses which inhibit optimal system use.
Resumo:
This thesis examines whether the rules for of evidence, which were developed around paper over centuries, are adequate for the authentication of electronic evidence. The history of documentary evidence is examined, and the nature of electronic evidence is explored, particularly recent types of electronic evidence such as social media and 'the Cloud'. The old rules are then critically applied to the varied types of electronic evidence to determine whether or not these old rules are indeed adequate.
Resumo:
The National Energy Efficient Building Project (NEEBP) Phase One report, published in December 2014, investigated “process issues and systemic failures” in the administration of the energy performance requirements in the National Construction Code. It found that most stakeholders believed that under-compliance with these requirements is widespread across Australia, with similar issues being reported in all states and territories. The report found that many different factors were contributing to this outcome and, as a result, many recommendations were offered that together would be expected to remedy the systemic issues reported. To follow up on this Phase 1 report, three additional projects were commissioned as part of Phase 2 of the overall NEEBP project. This Report deals with the development and piloting of an Electronic Building Passport (EBP) tool – a project undertaken jointly by pitt&sherry and a team at the Queensland University of Technology (QUT) led by Dr Wendy Miller. The other Phase 2 projects cover audits of Class 1 buildings and issues relating to building alterations and additions. The passport concept aims to provide all stakeholders with (controlled) access to the key documentation and information that they need to verify the energy performance of buildings. This trial project deals with residential buildings but in principle could apply to any building type. Nine councils were recruited to help develop and test a pilot electronic building passport tool. The participation of these councils – across all states – enabled an assessment of the extent to which these councils are currently utilising documentation; to track the compliance of residential buildings with the energy performance requirements in the National Construction Code (NCC). Overall we found that none of the participating councils are currently compiling all of the energy performance-related documentation that would demonstrate code compliance. The key reasons for this include: a major lack of clarity on precisely what documentation should be collected; cost and budget pressures; low public/stakeholder demand for the documentation; and a pragmatic judgement that non-compliance with any regulated documentation requirements represents a relatively low risk for them. Some councils reported producing documentation, such as certificates of final completion, only on demand, for example. Only three of the nine council participants reported regularly conducting compliance assessments or audits utilising this documentation and/or inspections. Overall we formed the view that documentation and information tracking processes operating within the building standards and compliance system are not working to assure compliance with the Code’s energy performance requirements. In other words the Code, and its implementation under state and territory regulatory processes, is falling short as a ‘quality assurance’ system for consumers. As a result it is likely that the new housing stock is under-performing relative to policy expectations, consuming unnecessary amounts of energy, imposing unnecessarily high energy bills on occupants, and generating unnecessary greenhouse gas emissions. At the same time, Councils noted that the demand for documentation relating to building energy performance was low. All the participant councils in the EBP pilot agreed that documentation and information processes need to work more effectively if the potential regulatory and market drivers towards energy efficient homes are to be harnessed. These findings are fully consistent with the Phase 1 NEEBP report. It was also agreed that an EBP system could potentially play an important role in improving documentation and information processes. However, only one of the participant councils indicated that they might adopt such a system on a voluntary basis. The majority felt that such a system would only be taken up if it were: - A nationally agreed system, imposed as a mandatory requirement under state or national regulation; - Capable of being used by multiple parties including councils, private certifiers, building regulators, builders and energy assessors in particular; and - Fully integrated into their existing document management systems, or at least seamlessly compatible rather than a separate, unlinked tool. Further, we note that the value of an EBP in capturing statistical information relating to the energy performance of buildings would be much greater if an EBP were adopted on a nationally consistent basis. Councils were clear that a key impediment to the take up of an EBP system is that they are facing very considerable budget and staffing challenges. They report that they are often unable to meet all community demands from the resources available to them. Therefore they are unlikely to provide resources to support the roll out of an EBP system on a voluntary basis. Overall, we conclude from this pilot that the public good would be well served if the Australian, state and territory governments continued to develop and implement an Electronic Building Passport system in a cost-efficient and effective manner. This development should occur with detailed input from building regulators, the Australian Building Codes Board (ABCB), councils and private certifiers in the first instance. This report provides a suite of recommendations (Section 7.2) designed to advance the development and guide the implementation of a national EBP system.
Resumo:
Visible, near-infrared, IR and Raman spectra of magnesian gaspeite are presented. Nickel ion is the main source of the electronic bands as it is the principal component in the mineral where as the bands in IR and Raman spectra are due to the vibrational processes in the carbonate ion as an entity. The combination of electronic absorption and vibrational spectra (including near-infrared, FTIR and Raman) of magnesian gaspeite are explained in terms of the cation co-ordination and the behaviour of CO32– anion in the Ni–Mg carbonate. The electronic absorption spectrum consists of three broad and intense bands at 8130, 13160 and 22730 cm–1 due to spin-allowed transitions and two weak bands at 20410 and 30300 cm–1 are assigned to spin-forbidden transitions of Ni2+ in an octahedral symmetry. The crystal field parameters evaluated from the observed bands are Dq = 810; B = 800 and C = 3200 cm–1. The two bands in the near-infrared spectrum at 4330 and 5130 cm–1 are overtone and combination of CO32– vibrational modes. For the carbonate group, infrared bands are observed at 1020 cm–1(1 ), 870 cm–1 (2), 1418 cm–1 (3) and 750 cm–1 (4), of which3, the asymmetric stretching mode is most intense. Three well resolved Raman bands at 1571, 1088 and 331 cm–1 are assigned to 3, 1 and MO stretching vibrations.
Resumo:
Teachers' failure to utilise MBL activities more widely may be due to not recognising their capacity to transform the nature of laboratory activities to be more consistent with contemporary constructivist theories of learning. This research aimed to increase understanding of how MBL activities specifically designed to be consistent with a constructivist theory of learning support or constrain student construction of understanding. The first author conducted the research with his Year 11 physics class of 29 students. Dyads completed nine tasks relating to kinematics using a Predict-Observe-Explain format. Data sources included video and audio recordings of students and teacher during four 70-minute sessions, students' display graphs and written notes, semi-structured student interviews, and the teacher's journal. The study identifies the actors and describes the patterns of interactions in the MBL. Analysis of students' discourse and actions identified many instances where students' initial understanding of kinematics were mediated in multiple ways. Students invented numerous techniques for manipulating data in the service of their emerging understanding. The findings are presented as eight assertions. Recommendations are made for developing pedagogical strategies incorporating MBL activities which will likely catalyse student construction of understanding.
Resumo:
The electrochemistry of homoleptic substituted phthalocyaninato rare earth double-decker complexes M(TBPc)2 and M(OOPc)2 [M = Y, La...Lu except Pm; H2TBPc = 3(4),12(13),21(22),30(31)-tetra-tert-butylphthalocyanine, H2OOPc = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] has been comparatively studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). Two quasi-reversible one-electron oxidations and three or four quasi-reversible one-electron reductions have been revealed for these neutral double-deckers of two series of substituted complexes, respectively. For comparison, unsubstituted bis(phthalocyaninato) rare earth analogues M(Pc)2 (M = Y, La...Lu except Pm; H2Pc = phthalocyanine) have also been electrochemically investigated. Two quasi-reversible one-electron oxidations and up to five quasi-reversible one-electron reductions have been revealed for these neutral double-decker compounds. The three bis(phthalocyaninato)cerium compounds display one cerium-centered redox wave between the first ligand-based oxidation and reduction. The half-wave potentials of the first and second oxidations and first reduction for double-deckers of the tervalent rare earths depend on the size of the metal center. The difference between the redox potentials of the second and third reductions for MIII(Pc)2, which represents the potential difference between the first oxidation and first reduction of [MIII(Pc)2]−, lies in the range 1.08−1.37 V and also gradually diminishes along with the lanthanide contraction, indicating enhanced π−π interactions in the double-deckers connected by the smaller, lanthanides. This corresponds well with the red-shift of the lowest energy band observed in the electronic absorption spectra of reduced double-decker [MIII(Pc′)2]− (Pc′ = Pc, TBPc, OOPc).
Resumo:
We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.