123 resultados para ecological functions of mangrove
Resumo:
Asymmetrical electrical boundary conditions in (001)-oriented Pb(Zr 0.2TiO0.8)O3 (PZT) epitaxial ultrathin ferroelectric films are exploited to control surface photochemical reactivity determined by the sign of the surface polarization charge. It is shown that the preferential orientation of polarization in the as-grown PZT layer can be manipulated by choosing an appropriate type of bottom electrode material. PZT films deposited on the SrRuO3 electrodes exhibit preferential upward polarization (C) whilst the same films grown on the (La,Sr)CoO 3-electrodes are polarized downward (C-). Photochemical activity of the PZT surfaces with different surface polarization charges has been tested by studying deposition of silver nanoparticles from AgNO3 solution under UV irradiation. PZT surfaces with preferential C orientation possess a more active surface for metal reduction than their C- counterparts, evidenced by large differences in the concentration of deposited silver nanoparticles. This effect is attributed to band bending at the bottom interface which varies depending on the difference in work functions of PZT and electrode materials.
Resumo:
A three-component fluid model for a dusty plasma-sheath in an oblique magnetic field is presented. The study is carried out for the conditions when the thermophoretic force associated with the electron temperature gradient is one of the most important forces affecting dust grains in the sheath. It is shown that the sheath properties (the sheath size, the electron, ion and dust particle densities and velocities, the electric field potential, and the forces affecting the dust particles) are functions of the neutral gas pressure and ion temperature, the dust size, the dust material density, and the electron temperature gradient. Effects of plasma-dust collisions on the sheath structure are studied. It is shown that an increase in the forces pushing dust particles to the wall is accompanied by a decrease in the sheath width. The results of this work are particularly relevant to low-temperature plasma-enabled technologies, where effective control of nano- and microsized particles near solid or liquid surfaces is required.
Resumo:
Texture information in the iris image is not uniform in discriminatory information content for biometric identity verification. The bits in an iris code obtained from the image differ in their consistency from one sample to another for the same identity. In this work, errors in bit strings are systematically analysed in order to investigate the effect of light-induced and drug-induced pupil dilation and constriction on the consistency of iris texture information. The statistics of bit errors are computed for client and impostor distributions as functions of radius and angle. Under normal conditions, a V-shaped radial trend of decreasing bit errors towards the central region of the iris is obtained for client matching, and it is observed that the distribution of errors as a function of angle is uniform. When iris images are affected by pupil dilation or constriction the radial distribution of bit errors is altered. A decreasing trend from the pupil outwards is observed for constriction, whereas a more uniform trend is observed for dilation. The main increase in bit errors occurs closer to the pupil in both cases.
Resumo:
Dispersion characteristics and topography of electromagnetic fields of axially symmetric surface waves (SW) and of azimuth surface waves (ASW) propagating in a structure composed of a cylindrical metal antenna and magnetoactive plasma are investigated. The antenna and plasma may be separated by a vacuum layer. The dispersion characteristics of SW and ASW are presented as functions of the antenna and the magnetoactive plasma parameters. Close agreement between theory and experimental results are shown. Surface impedances of the SW and ASW are calculated for various parameters of the problem.
Resumo:
Slippage in the contact roller-races has always played a central role in the field of diagnostics of rolling element bearings. Due to this phenomenon, vibrations triggered by a localized damage are not strictly periodic and therefore not detectable by means of common spectral functions as power spectral density or discrete Fourier transform. Due to the strong second order cyclostationary component, characterizing these signals, techniques such as cyclic coherence, its integrated form and square envelope spectrum have proven to be effective in a wide range of applications. An expert user can easily identify a damage and its location within the bearing components by looking for particular patterns of peaks in the output of the selected cyclostationary tool. These peaks will be found in the neighborhood of specific frequencies, that can be calculated in advance as functions of the geometrical features of the bearing itself. Unfortunately the non-periodicity of the vibration signal is not the only consequence of the slippage: often it also involves a displacement of the damage characteristic peaks from the theoretically expected frequencies. This issue becomes particularly important in the attempt to develop highly automated algorithms for bearing damage recognition, and, in order to correctly set thresholds and tolerances, a quantitative description of the magnitude of the above mentioned deviations is needed. This paper is aimed at identifying the dependency of the deviations on the different operating conditions. This has been possible thanks to an extended experimental activity performed on a full scale bearing test rig, able to reproduce realistically the operating and environmental conditions typical of an industrial high power electric motor and gearbox. The importance of load will be investigated in detail for different bearing damages. Finally some guidelines on how to cope with such deviations will be given, accordingly to the expertise obtained in the experimental activity.
Resumo:
The environmental performance of a listed firm could affect its level of investment in pollution prevention and its access to financial markets. Previous studies using Tobin's q that explore market response to environmental performance do not distinguish between the impact of performance on investment and market response, which may mislead conclusions. To overcome this problem, we simultaneously estimate the functions of the intangible asset, the replacement cost, and the toxic chemical risk. We find that the Japanese financial market does not value risk associated with toxic chemical releases. Nevertheless, even without market valuation, firms increase investment to reduce pollution. © 2010 by the Board of Regents of the University of Wisconsin System.
Resumo:
Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTI). To cause a UTI, UPEC must adhere to the epithelial cells of the urinary tract and overcome the shear flow forces of urine. This function is mediated primarily by fimbrial adhesins, which mediate specific attachment to host cell receptors. Another group of adhesins that contributes to UPEC-mediated UTI is autotransporter (AT) proteins. AT proteins possess a range of virulence properties, such as adherence, aggregation, invasion, and biofilm formation. One recently characterized AT protein of UPEC is UpaH, a large adhesin-involved-in-diffuse-adherence (AIDA-I)-type AT protein that contributes to biofilm formation and bladder colonization. In this study we characterized a series of naturally occurring variants of UpaH. We demonstrate that extensive sequence variation exists within the passenger-encoding domain of UpaH variants from different UPEC strains. This sequence variation is associated with functional heterogeneity with respect to the ability of UpaH to mediate biofilm formation. In contrast, all of the UpaH variants examined retained a conserved ability to mediate binding to extracellular matrix (ECM) proteins. Bioinformatic analysis of the UpaH passenger domain identified a conserved region (UpaHCR) and a hydrophobic region (UpaHHR). Deletion of these domains reduced biofilm formation but not the binding to ECM proteins. Despite variation in the upaH sequence, the transcription of upaH was repressed by a conserved mechanism involving the global regulator H-NS, and mutation of the hns gene relieved this repression. Overall, our findings shed new light on the regulation and functions of the UpaH AT protein.
Resumo:
Significance Reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and peroxynitrite are generated ubiquitously by all mammalian cells and have been understood for many decades as inflicting cell damage and as causing cancer by oxidation and nitration of macromolecules, including DNA, RNA, proteins, and lipids. Recent Advances A current concept suggests that ROS can also promote cell signaling pathways triggered by growth factors and transcription factors that ultimately regulate cell proliferation, differentiation, and apoptosis, all of which are important hallmarks of tumor cell proliferation and angiogenesis. Moreover, an emerging concept indicates that ROS regulate the functions of immune cells that infiltrate the tumor environment and stimulate angiogenesis, such as macrophages and specific regulatory T cells. Critical Issues In this article, we highlight that the NADPH oxidase family of ROS-generating enzymes are the key sources of ROS and, thus, play an important role in redox signaling within tumor, endothelial, and immune cells thereby promoting tumor angiogenesis. Future Directions Knowledge of these intricate ROS signaling pathways and identification of the culprit NADPH oxidases is likely to reveal novel therapeutic opportunities to prevent angiogenesis that occurs during cancer and which is responsible for the revascularization after current antiangiogenic treatment.
Resumo:
Aims: Caveolin-1 (cav1) is reported to have both cell survival and pro-apoptotic characteristics. This may be explained by its localisation or phosphorylation in injured cells. This study investigated the role of cav1 in kidney cells of different nephron origin and developmental state after oxidative stress. Methods: Renal MCDK distal tubular, HK2 proximal tubular epithelial cells and HEK293T renal embryonic cells were treated with 1mM hydrogen peroxide. Apoptosis, loss of cell adhesion, and cell survival were compared with expression of cav1 in its non-phosphorylated and phosphorylated (p-cav1) forms. Cav1 was transfected into the HEK293T cells, or caveolae were disrupted with filipin or nystatin in HK2 cells, to investigate functions of cav1 and p-cav1. Results: Oxidative stress induced more apoptosis in HK2s than MDCKs (p<0.05). HK2s had lower endogenous cav1 and p-cav1 than MDCKs (p<0.05). Both cell lines had increased p-cav1, but not cav1, with oxidative stress. This increase was greatest in MDCKs (p<0.01). Cav1 was located mainly in the plasma membrane of untreated cells and translocated to the cytoplasm with oxidative stress in both cell lines, more so in MDCKs. Disruption of caveolae caused cytoplasmic translocation of cav1 in HK2s, but did not alter high levels of oxidative stress-induced apoptosis. When HEK293Ts lacking endogenous cav1 were transfected with cav1, oxidant-induced apoptosis and loss of cell adhesion was decreased (p<0.01), and p-cav1 was induced by treatment. Conclusion: Cav1 expression and localisation in kidney cells is not anti-apoptotic, but increased expression of p-cav1 may promote cell survival after oxidative stress. © 2008 Royal College of Pathologists of Australasia.
Resumo:
Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the dataset for this premise rarely include linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance. Methods: Three ecological pairs of invasive vs non-invasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g. water use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored. Key results: Mean leaf anatomical trait differed significantly between the two groups, except for stomatal size. Plasticity of traits, and to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration. Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.
Resumo:
Background Summarizing the epidemiology of major depressive disorder (MDD) at a global level is complicated by significant heterogeneity in the data. The aim of this study is to present a global summary of the prevalence and incidence of MDD, accounting for sources of bias, and dealing with heterogeneity. Findings are informing MDD burden quantification in the Global Burden of Disease (GBD) 2010 Study. Method A systematic review of prevalence and incidence of MDD was undertaken. Electronic databases Medline, PsycINFO and EMBASE were searched. Community-representative studies adhering to suitable diagnostic nomenclature were included. A meta-regression was conducted to explore sources of heterogeneity in prevalence and guide the stratification of data in a meta-analysis. Results The literature search identified 116 prevalence and four incidence studies. Prevalence period, sex, year of study, depression subtype, survey instrument, age and region were significant determinants of prevalence, explaining 57.7% of the variability between studies. The global point prevalence of MDD, adjusting for methodological differences, was 4.7% (4.4–5.0%). The pooled annual incidence was 3.0% (2.4–3.8%), clearly at odds with the pooled prevalence estimates and the previously reported average duration of 30 weeks for an episode of MDD. Conclusions Our findings provide a comprehensive and up-to-date profile of the prevalence of MDD globally. Region and study methodology influenced the prevalence of MDD. This needs to be considered in the GBD 2010 study and in investigations into the ecological determinants of MDD. Good-quality estimates from low-/middle-income countries were sparse. More accurate data on incidence are also required.
Resumo:
We propose and mathematically examine a theory of calcium profile formation in unwounded mammalian epidermis based on: changes in keratinocyte proliferation, fluid and calcium exchange with the extracellular fluid during these cells' passage through the epidermal sublayers, and the barrier functions of both the stratum corneum and tight junctions localised in the stratum granulosum. Using this theory, we develop a mathematical model that predicts epidermal sublayer transit times, partitioning of the epidermal calcium gradient between intracellular and extracellular domains, and the permeability of the tight junction barrier to calcium ions. Comparison of our model's predictions of epidermal transit times with experimental data indicates that keratinocytes lose at least 87% of their volume during their disintegration to become corneocytes. Intracellular calcium is suggested as the main contributor to the epidermal calcium gradient, with its distribution actively regulated by a phenotypic switch in calcium exchange between keratinocytes and extracellular fluid present at the boundary between the stratum spinosum and the stratum granulosum. Formation of the extracellular calcium distribution, which rises in concentration through the stratum granulosum towards the skin surface, is attributed to a tight junction barrier in this sublayer possessing permeability to calcium ions that is less than 15 nm/s in human epidermis and less than 37 nm/s in murine epidermis. Future experimental work may refine the presented theory and reduce the mathematical uncertainty present in the model predictions.
Resumo:
A compelling body of studies identifies the importance of sleep for children’s learning, behavioral regulation, and health. These studies have primarily focused on nighttime sleep or on total sleep duration. The independent contribution of daytime sleep, or napping, in childhood is an emerging research focus. Daytime sleep is particularly pertinent to the context of early childhood education and care (ECEC) where, internationally, allocation of time for naps is commonplace through to the time of school entry. The biological value of napping varies with neurological maturity and with individual circumstance. Beyond the age of 3 years, when monophasic sleep patterns become typical, there is an increasing disjuncture between children’s normative sleep requirements and ECEC practice. At this time, research evidence consistently identifies an association between napping and decreased quality and duration of night sleep. We assess the implications of this evidence for educational practice and health policy. We identify the need to distinguish the functions of napping from those of rest, and assert the need for evidence-based guidelines on sleep–rest practices in ECEC settings to accommodate individual variation in sleep needs. Given both the evidence on the impact of children’s nighttime sleep on long-term trajectories of health and well-being and the high rates of child attendance in ECEC programs, we conclude that policy and practice regarding naptime have significant implications for child welfare and ongoing public health.
Resumo:
Many RFID protocols use cryptographic hash functions for their security. The resource constrained nature of RFID systems forces the use of light weight cryptographic algorithms. Tav-128 is one such 128-bit light weight hash function proposed by Peris-Lopez et al. for a low-cost RFID tag authentication protocol. Apart from some statistical tests for randomness by the designers themselves, Tav-128 has not undergone any other thorough security analysis. Based on these tests, the designers claimed that Tav-128 does not posses any trivial weaknesses. In this article, we carry out the first third party security analysis of Tav-128 and show that this hash function is neither collision resistant nor second preimage resistant. Firstly, we show a practical collision attack on Tav-128 having a complexity of 237 calls to the compression function and produce message pairs of arbitrary length which produce the same hash value under this hash function. We then show a second preimage attack on Tav-128 which succeeds with a complexity of 262 calls to the compression function. Finally, we study the constituent functions of Tav-128 and show that the concatenation of nonlinear functions A and B produces a 64-bit permutation from 32-bit messages. This could be a useful light weight primitive for future RFID protocols.
Resumo:
The study examined the health-related behaviours of Saudi people following a recent cardiac event and identified the factors that influence these behaviours using McLeroy et al.'s (1988) Ecological Model of Health Behaviours as a guiding framework. The study was one of the first in Saudi Arabia to examine the health-related behaviours of Saudi people following a recent cardiac event. The study findings emphasise the importance of a program that integrates secondary prevention practices, educational approaches and targeted supportive services in cardiac care in Saudi Arabia.