122 resultados para cs.LG
Resumo:
Here we report on the synthesis of caesium doped graphene oxide (GO-Cs) and its application to the development of a novel NO2 gas sensor. The GO, synthesized by oxidation of graphite through chemical treatment, was doped with Cs by thermal solid-state reaction. The samples, dispersed in DI water by sonication, have been drop-casted on standard interdigitated Pt electrodes. The response of both pristine and Cs doped GO to NO2 at room temperature is studied by varying the gas concentration. The developed GO-Cs sensor shows a higher response to NO2 than the pristine GO based sensor due to the oxygen functional groups. The detection limit measured with GO-Cs sensor is ≈90 ppb.
Resumo:
This paper presents a comprehensive numerical procedure to treat the blast response of laminated glass (LG) panels and studies the influence of important material parameters. Post-crack behaviour of the LG panel and the contribution of the interlayer towards blast resistance are treated. Modelling techniques are validated by comparing with existing experimental results. Findings indicate that the tensile strength of glass considerably influences the blast response of LG panels while the interlayer material properties have a major impact on the response under higher blast loads. Initially, glass panes absorb most of the blast energy, but after the glass breaks, interlayer deforms further and absorbs most of the blast energy. LG panels should be designed to fail by tearing of the interlayer rather than failure at the supports to achieve a desired level of protection. From this aspect, material properties of glass, interlayer and sealant joints play important roles, but unfortunately they are not accounted for in the current design standards. The new information generated in this paper will enhance the capabilities of engineers to better design LG panels under blast loads and use better materials to improve the blast response of LG panels.
Resumo:
Curriculum renewal is a constant activity in Information Technology (IT), Information Systems (IS), Information and Communication Technology (ICT) and Computer Science (CS). Guiding documents from curriculum authorities such as AIS, IEEE and ACM assist in this process, as do those from professional societies, but these are often out of date when the institution seeks to refresh its approaches to learning, and position its graduates for emerging roles and technologies. This paper describes and discusses a curriculum renewal project undertaken in response to changing government requirements,student interests and the adoption of a learner-centric, active learning paradigm utilizing new physical collaborative learning facilities. This paper presents the stimulus for change, describes the use of reference resources and discusses the resulting degree structure, its majors and learning approaches.
Resumo:
Colloidal semiconductor nanocrystals (CS-NCs) possess compelling benefits of low-cost, large-scale solution processing, and tunable optoelectronic properties through controlled synthesis and surface chemistry engineering. These merits make them promising candidates for a variety of applications. This review focuses on the general strategies and recent developments of the controlled synthesis of CS-NCs in terms of crystalline structure, particle size, dominant exposed facet, and their surface passivation. Highlighted are the organic-media based synthesis of metal chalcogenide (including cadmium, lead, and copper chalcogenide) and metal oxide (including titanium oxide and zinc oxide) nanocrystals. Current challenges and thus future opportunities are also pointed out in this review.
Resumo:
Text is the main method of communicating information in the digital age. Messages, blogs, news articles, reviews, and opinionated information abounds on the Internet. People commonly purchase products online and post their opinions about purchased items. This feedback is displayed publicly to assist others with their purchasing decisions, creating the need for a mechanism with which to extract and summarize useful information for enhancing the decision-making process. Our contribution is to improve the accuracy of extraction by combining different techniques from three major areas, named Data Mining, Natural Language Processing techniques and Ontologies. The proposed framework sequentially mines product’s aspects and users’ opinions, groups representative aspects by similarity, and generates an output summary. This paper focuses on the task of extracting product aspects and users’ opinions by extracting all possible aspects and opinions from reviews using natural language, ontology, and frequent “tag” sets. The proposed framework, when compared with an existing baseline model, yielded promising results.
Resumo:
The Hauraki Gulf is a large, shallow embayment located north of Auckland City (36°51′S, 174°46′E), New Zealand. Bryde's whales (Balaenoptera edeni) are the most frequently observed balaenopterid in these waters. To assess the use of the Hauraki Gulf for this species, we examined the occurrence and distribution in relation to environmental parameters. Data were collected from a platform of opportunity during 674 daily surveys between March 2003 and February 2006. A total of 760 observations of Bryde's whales were recorded throughout the study period during 371 surveys. The number of Bryde's whales sighted/day was highest in winter, coinciding with the coolest median sea-surface temperature (14.6°C). Bryde's whales were recorded throughout the Hauraki Gulf in water depths ranging from 12.1–59.8 m (mean = 42.3, SD = 5.1). Cow–calf pairs were most frequently observed during the austral autumn in water depths of 29.9–53.9 m (mean = 40.8, SD = 5.2). Data from this study suggest Bryde's whales in the Hauraki Gulf exhibit a mix of both “inshore” and “offshore” characteristics from the Bryde's whales examined off the coast of South Africa. Based on complete mitochondrial DNA sequences, Sasaki et al. (2006) recognized two sister species of Bryde's whales: Balaenoptera brydei and B. edeni, with the latter including small-type, more coastal Bryde's whales from Japan, Hong Kong, and Australia. Their samples and samples in previous analyses of small-type whales, all originated from eastern and southeastern Asia. These authors did not include the forms of Bryde's whales that occur in other regions, e.g., in the Pacific off Peru (Valdivia et al. 1981), in the Atlantic off Brazil (Best 1977) and in the western Indian Ocean off South Africa (Best 1977). Recent genetic analysis using mtDNA from the “inshore” and “offshore” forms from South Africa confirms the offshore form is B. brydei, and establishes that the inshore form is more closely related to B. brydei than to B. edeni (Penry 2010). These different forms do vary considerably in their habitat use and ecology (refer to Table 1 for a detailed comparison between the South African inshore and offshore forms, as described by Best (1967, 1977) and the Bryde's whales from New Zealand (Wiseman 2008). Recent genetic analysis on the Bryde's whales in the Hauraki Gulf suggests they are B. brydei (Wiseman 2008). However, pending resolution of the uncertainty within and between species of this genus, we follow the Society of Marine Mammal's committee on taxonomy, who state that B. edeni applies to all Bryde's whales.
Resumo:
Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.
Resumo:
Bats are an important component of mammalian biodiversity and fill such a wide array of ecological niches that they may offer an important multisensory bioindicator role in assessing ecosystem health. There is a need to monitor population trends of bats for their own sake because many populations face numerous environmental threats related to climate change, habitat loss, fragmentation, hunting, and emerging diseases. To be able to establish bat ultrasonic biodiversity trends as a reliable indicator, it is important to standardize monitoring protocols, data management, and analyses. This chapter discusses the main issues to be considered in developing a bat ultrasonic indicator. It focuses on the results from indicator bats program (iBats), a system for the global acoustic monitoring of bats, in Eastern Europe. Finally, the chapter reviews the strengths and weaknesses of the Program and considers the opportunities and threats that it may face in the future.
Resumo:
The lateral amygdala (LA) receives information from auditory and visual sensory modalities, and uses this information to encode lasting memories that predict threat. One unresolved question about the amygdala is how multiple memories, derived from different sensory modalities, are organized at the level of neuronal ensembles. We previously showed that fear conditioning using an auditory conditioned stimulus (CS) was spatially allocated to a stable topography of neurons within the dorsolateral amygdala (LAd) (Bergstrom et al, 2011). Here, we asked how fear conditioning using a visual CS is topographically organized within the amygdala. To induce a lasting fear memory trace we paired either an auditory (2 khz, 55 dB, 20 s) or visual (1 Hz, 0.5 s on/0.5 s off, 35 lux, 20 s) CS with a mild foot shock unconditioned stimulus (0.6 mA, 0.5 s). To detect learning-induced plasticity in amygdala neurons, we used immunohistochemistry with an antibody for phosphorylated mitogen-activated protein kinase (pMAPK). Using a principal components analysis-based approach to extract and visualize spatial patterns, we uncovered two unique spatial patterns of activated neurons in the LA that were associated with auditory and visual fear conditioning. The first spatial pattern was specific to auditory cued fear conditioning and consisted of activated neurons topographically organized throughout the LAd and ventrolateral nuclei (LAvl) of the LA. The second spatial pattern overlapped for auditory and visual fear conditioning and was comprised of activated neurons located mainly within the LAvl. Overall, the density of pMAPK labeled cells throughout the LA was greatest in the auditory CS group, even though freezing in response to the visual and auditory CS was equivalent. There were no differences detected in the number of pMAPK activated neurons within the basal amygdala nuclei. Together, these results provide the first basic knowledge about the organizational structure of two different fear engrams within the amygdala and suggest they are dissociable at the level of neuronal ensembles within the LA
Resumo:
Emotionally significant memories, especially those induced in conjunction with physical and mental trauma, are frequently retained for an individual’s lifetime. How these memories are organized and encoded within neural networks is a fundamental question. The lateral amygdala (LA) is a key nucleus for acquisition and maintenance of associative emotional memories. We used Pavlovian fear conditioning to study how ‘weaker’ and ‘stronger’ memories are encoded in neural networks of the LA. In Pavlovian fear conditioning a neutral stimulus, in this case a tone, is temporally paired with an aversive unconditioned stimulus (US), such as a foot shock. The previously neutral stimulus becomes a conditioned stimulus (CS) capable of eliciting defensive responses. We used time spent freezing when the CS is presented in a neutral context as a dependent variable measure of memory ‘strength’.
Resumo:
The dorsal lateral amygdala (LAd) is a vital nucleus for the formation of associations between aversive unconditioned stimuli (US) and neutral stimuli, such as auditory tones, which can become conditioned (CS) to the US through temporal pairing. Important aspects of CS-US associations are believed to occur within the LAd, however relatively little is known about the temporal behavior of local LAd networks. Information about the CS and US enters the LA via a rapid and direct thalamic input and a longer latency cortical path...
Resumo:
In classical fear conditioning a neutral conditioned stimulus (CS), is paired with an aversive unconditioned stimulus (US). The CS thereby acquires the capacity to elicit a fear response. This type of associative learning is thought to require co-activation of principal neurons in the lateral nucleus of the amygdala (LA) by two sets of synaptic inputs...
Resumo:
During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons in the lateral nucleus of the amygdala (LA). One proposed form of cellular plasticity involves structural changes in the number and morphology of dendritic spines...
Resumo:
During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons of the lateral nucleus of the amygdala (LA). While the LA has been implicated as a key brain structure for fear learning, how its network of cellular components performs these operations is not yet known...
Resumo:
In classical fear conditioning a neutral conditioned stimulus (CS) such as a tone, is paired with an aversive unconditioned stimulus (US) such as a shock. The CS thereby acquires the capacity to elicit a fear response. This type of associative learning is thought to require co-activation of principle neurons in the lateral nucleus of the amygdala (LA) by two sets of synaptic inputs, a weak CS and a strong US...