612 resultados para clinical prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adaptive agent improves its performance by learning from experience. This paper describes an approach to adaptation based on modelling dynamic elements of the environment in order to make predictions of likely future state. This approach is akin to an elite sports player being able to “read the play”, allowing for decisions to be made based on predictions of likely future outcomes. Modelling of the agent‟s likely future state is performed using Markov Chains and a technique called “Motion and Occupancy Grids”. The experiments in this paper compare the performance of the planning system with and without the use of this predictive model. The results of the study demonstrate a surprising decrease in performance when using the predictions of agent occupancy. The results are derived from statistical analysis of the agent‟s performance in a high fidelity simulation of a world leading real robot soccer team.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background It remains unclear over whether it is possible to develop an epidemic forecasting model for transmission of dengue fever in Queensland, Australia. Objectives To examine the potential impact of El Niño/Southern Oscillation on the transmission of dengue fever in Queensland, Australia and explore the possibility of developing a forecast model of dengue fever. Methods Data on the Southern Oscillation Index (SOI), an indicator of El Niño/Southern Oscillation activity, were obtained from the Australian Bureau of Meteorology. Numbers of dengue fever cases notified and the numbers of postcode areas with dengue fever cases between January 1993 and December 2005 were obtained from the Queensland Health and relevant population data were obtained from the Australia Bureau of Statistics. A multivariate Seasonal Auto-regressive Integrated Moving Average model was developed and validated by dividing the data file into two datasets: the data from January 1993 to December 2003 were used to construct a model and those from January 2004 to December 2005 were used to validate it. Results A decrease in the average SOI (ie, warmer conditions) during the preceding 3–12 months was significantly associated with an increase in the monthly numbers of postcode areas with dengue fever cases (β=−0.038; p = 0.019). Predicted values from the Seasonal Auto-regressive Integrated Moving Average model were consistent with the observed values in the validation dataset (root-mean-square percentage error: 1.93%). Conclusions Climate variability is directly and/or indirectly associated with dengue transmission and the development of an SOI-based epidemic forecasting system is possible for dengue fever in Queensland, Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent years have seen the introduction of formalised accreditation processes in both community and residential aged care, but these only partially address quality assessment within this sector. Residential aged care in Australia does not yet have a standardised system of resident assessment related to clinical, rather than administrative, outcomes. This paper describes the development of a quality assessment tool aimed at addressing this gap. Utilising previous research and the results of nominal groups with experts in the field, the 21-item Clinical Care Indicators (CCI) Tool for residential aged care was developed and trialled nationally. The CCI Tool was found to be simple to use and an effective means of collecting data on the state of resident health and care, with potential benefits for resident care planning and continuous quality improvement within facilities and organisations. The CCI Tool was further refined through a small intervention study to assess its utility as a quality improvement instrument and to investigate its relationship with resident quality of life. The current version covers 23 clinical indicators, takes about 30 minutes to complete and is viewed favourably by nursing staff who use it. Current work focuses on psychometric analysis and benchmarking, which should enable the CCI Tool to make a positive contribution to the measurement of quality in aged care in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To draw on empirical evidence to illustrate the core role of nurse practitioners in Australia and New Zealand. BACKGROUND: Enacted legislation provides for mutual recognition of qualifications, including nursing, between New Zealand and Australia. As the nurse practitioner role is relatively new in both countries, there is no consistency in role expectation and hence mutual recognition has not yet been applied to nurse practitioners. A study jointly commissioned by both countries' Regulatory Boards developed information on the core role of the nurse practitioner, to develop shared competency and educational standards. Reporting on this study's process and outcomes provides insights that are relevant both locally and internationally. METHOD: This interpretive study used multiple data sources, including published and grey literature, policy documents, nurse practitioner program curricula and interviews with 15 nurse practitioners from the two countries. Data were analysed according to the appropriate standard for each data type and included both deductive and inductive methods. The data were aggregated thematically according to patterns within and across the interview and material data. FINDINGS: The core role of the nurse practitioner was identified as having three components: dynamic practice, professional efficacy and clinical leadership. Nurse practitioner practice is dynamic and involves the application of high level clinical knowledge and skills in a wide range of contexts. The nurse practitioner demonstrates professional efficacy, enhanced by an extended range of autonomy that includes legislated privileges. The nurse practitioner is a clinical leader with a readiness and an obligation to advocate for their client base and their profession at the systems level of health care. CONCLUSION: A clearly articulated and research informed description of the core role of the nurse practitioner provides the basis for development of educational and practice competency standards. These research findings provide new perspectives to inform the international debate about this extended level of nursing practice. RELEVANCE TO CLINICAL PRACTICE: The findings from this research have the potential to achieve a standardised approach and internationally consistent nomenclature for the nurse practitioner role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.