152 resultados para bi-layer
Resumo:
Most civil engineering structures are formed using a number of materials that are bonded to each other with their surface-to-surface interaction playing key role on the overall response of the structure. Unfortunately these interactions are extremely variable; simplified and extremely detailed models trialed to date prove quite complex. Models that assume perfect interaction, on the other hand, predict unsafe behavior. In this paper a damage mechanics based interaction between two materials of different softening properties is developed using homogenisation approach. This paper describes the process of developing a bi-material representative volume element (RVE) using damaged homogenisation approach. The novelty in this paper is the development of non-local transient damage identification algorithm. Numerical examples prove the stability of the approach for a simplified RVE and encourage application to other shapes of RVEs.
Resumo:
Wireless networked control systems (WNCSs) have been increasingly deployed in industrial applications. As they require timely data packet transmissions, it is difficult to make efficient use of the limited channel resources, particularly in contention based wireless networks in the layered network architecture. Aiming to maintain the WNCSs under critical real-time traffic condition at which the WNCSs marginally meet the real-time requirements, a cross-layer design (CLD) approach is presented in this paper to adaptively adjust the control period to achieve improved channel utilization while still maintaining effective and timely packet transmissions. The effectiveness of the proposed approach is demonstrated through simulation studies.
Resumo:
Purpose To evaluate the association between retinal nerve fibre layer (RNFL) thickness and diabetic peripheral neuropathy in people with type 2 diabetes, and specifically those at higher risk of foot ulceration. Methods RNFL thicknesses was measured globally and in four quadrants (temporal, superior, nasal and inferior) at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). Severity of neuropathy was assessed using the Neuropathy Disability Score (NDS). Eighty-two participants with type 2 diabetes were stratified according to NDS scores (0-10) as: none, mild, moderate, and severe neuropathy. A control group was additionally included (n=17). Individuals with NDS≥ 6 (moderate and severe neuropathy) have been shown to be at higher risk of foot ulceration. A linear regression model was used to determine the association between RNFL and severity of neuropathy. Age, disease duration and diabetic retinopathy levels were fitted in the models. Independent t-test was employed for comparison between controls and the group without neuropathy, as well as for comparison between groups with higher and lower risk of foot ulceration. Analysis of variance was used to compare across all NDS groups. Results RNFL thickness was significantly associated with NDS in the inferior quadrant (b= -1.46, p=0.03). RNFL thicknesses globally and in superior, temporal and nasal quadrants did not show significant associations with NDS (all p>0.51). These findings were independent of the effect of age, disease duration and retinopathy. RNFL was thinner for the group with NDS ≥ 6 in all quadrants but was significant only inferiorly (p<0.005). RNFL for control participants was not significantly different from the group with diabetes and no neuropathy (superior p=0.07, global and all other quadrants: p>0.23). Mean RNFL thickness was not significantly different between the four NDS groups globally and in all quadrants (p=0.08 for inferior, P>0.14 for all other comparisons). Conclusions Retinal nerve fibre layer thinning is associated with neuropathy in people with type 2 diabetes. This relationship is strongest in the inferior retina and in individuals at higher risk of foot ulceration.
Resumo:
Because cartilage and bone tissues have different lineage-specific biological properties, it is challenging to fabricate a single type of scaffold that can biologically fulfill the requirements for regeneration of these two lineages simultaneously within osteochondral defects. To overcome this challenge, a lithium-containing mesoporous bioglass (Li-MBG) scaffold is developed. The efficacy and mechanism of Li-MBG for regeneration of osteochondral defects are systematically investigated. Histological and micro-CT results show that Li-MBG scaffolds significantly enhance the regeneration of subchondral bone and hyaline cartilage-like tissues as compared to pure MBG scaffolds, upon implantation in rabbit osteochondral defects for 8 and 16 weeks. Further investigation demonstrates that the released Li+ ions from the Li-MBG scaffolds may play a key role in stimulating the regeneration of osteochondral defects. The corresponding mechanistic pathways involve Li+ ions enhancing the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) through activation of the Wnt signalling pathway, as well as Li+ ions protecting chondrocytes and cartilage tissues from the inflammatory osteoarthritis (OA) environment through activation of autophagy. These findings suggest that the incorporation of Li+ ions into bioactive MBG scaffolds is a viable strategy for fabricating bi-lineage conducive scaffolds that enhance regeneration of osteochondral defects.
Resumo:
There has been significant interest in developing metal oxide films with high surface area-to-volume ratio nanostructures particularly in substantially increasing the performance of Pt/oxide/semiconductor Schottky-diode gas sensors. While retaining the surface morphology of these devices, they can be further improved by modifying their nanostructured surface with a thin metal oxide layer. In this work, we analyse and compare the electrical and hydrogen-sensing properties of MoO3 nanoplatelets coated with a 4 nm layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We explain in our study, that the presence of numerous defect traps at the surface (and the bulk) of the thin high-� layer causes a substantial trapping of charge during hydrogen adsorption. As a result, the interface between the Pt electrode and the thin oxide layer becomes highly polarised. Measurement results also show that the nanoplatelets coated with Ta2O5 can enable the device to be more sensitive (a larger voltage shift under hydrogen exposure) than those coated with La2O3.
Resumo:
Purpose. To quantify the molecular lipid composition of patient-matched tear and meibum samples and compare tear and meibum lipid molecular profiles. Methods. Lipids were extracted from tears and meibum by bi-phasic methods using 10:3 tertbutyl methyl ether:methanol, washed with aqueous ammonium acetate, and analyzed by chipbased nanoelectrospray ionization tandem mass spectrometry. Targeted precursor ion and neutral loss scans identified individual molecular lipids and quantification was obtained by comparison to internal standards in each lipid class. Results. Two hundred and thirty-six lipid species were identified and quantified from nine lipid classes comprised of cholesterol esters, wax esters, (O-acyl)-x-hydroxy fatty acids, triacylglycerols, phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and phosphatidylserine. With the exception of phospholipids, lipid molecular profiles were strikingly similar between tears and meibum. Conclusions. Comparisons between tears and meibum indicate that meibum is likely to supply the majority of lipids in the tear film lipid layer. However, the observed higher mole ratio of phospholipid in tears shows that analysis of meibum alone does not provide a complete understanding of the tear film lipid composition.
Resumo:
The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.
Resumo:
We report on the comparative study of magnetotransport properties of large-area vertical few-layer graphene networks with different morphologies, measured in a strong (up to 10 T) magnetic field over a wide temperature range. The petal-like and tree-like graphene networks grown by a plasma enhanced CVD process on a thin (500 nm) silicon oxide layer supported by a silicon wafer demonstrate a significant difference in the resistance-magnetic field dependencies at temperatures ranging from 2 to 200 K. This behaviour is explained in terms of the effect of electron scattering at ultra-long reactive edges and ultra-dense boundaries of the graphene nanowalls. Our results pave a way towards three-dimensional vertical graphene-based magnetoelectronic nanodevices with morphology-tuneable anisotropic magnetic properties. © The Royal Society of Chemistry 2013.
Resumo:
Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.
Resumo:
The effect of a SiO2 nanolayer and annealing temperature on the UV/visible room-temperature photoluminescence (PL) from SiNx films synthesized by rf magnetron sputtering is studied. The PL intensity can be maximized when the SiO2 layer is 510 nm thick at 800 °C annealing temperature and only 2 nm at 1000 °C. A compositionstructureproperty analysis reveals that the PL intensity is directly related to both the surface chemical states and the content of the SiO and SiN bonds in the SiNx films. These results are relevant for the development of advanced optoelectronic and photonic emitters and sensors. © 2010 Elsevier B.V. All rights reserved.
Resumo:
This research was a step forward to developing data sets for thin layer mortared concrete masonry through systematic experimental and numerical studies. Since thin layer mortared concrete masonry is relatively new type of masonry construction, methodical research studies have been undertaken to properly address the gaps in understanding of this masonry system. As part of the ARC Linkage research project, this thesis has been developed to extend the knowledge on thin layer mortared concrete masonry.
Resumo:
Carbon microcoils (CMCs) have been coated with a Ni nanoparticle film using an electroless plating process. The morphology, the elemental composition and the phases in the coating layer, complex permittivity and permeability of the CMCs and Ni-coated CMCs were, respectively, investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and microwave vector network analysis at room temperature. A homogeneous dispersion of Ni nanoparticles on the outer surface of the CMCs was obtained, with a mean particle size of ∼34.4 nm and the phosphorus content of about 8.5 wt%. When comparing the coated and uncoated CMC samples, the real (ε′) and imaginary (ε″) part of the complex permittivity as well as dielectric dissipation factor (tgδε = ε″/ε′) of the Ni-coated CMCs were much smaller, while the real (μ′) and imaginary (μ″) part of the complex permeability and the magnetic dissipation factor (t g σμ = μ″ / μ′) were larger. The enhanced microwave absorption of Ni-coated CMCs resulted from stronger dielectric and magnetic losses. In contrast, the microwave absorption of uncoated CMCs was mainly attributed to the dielectric rather than magnetic losses.
Resumo:
Carbon microcoils (CMCs) have been coated with a nickel-phosphorus (Ni-P) film using an electroless plating process, with sodium hypophosphite as a reducing agent in an alkaline bath. CMC composites have potential applications as microwave absorption materials. The morphology, elemental composition and phases in the coating layer of the CMCs and Ni-coated CMCs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The effects of process parameters such as pH, temperature and coating time of the plating bath on the phosphorus content and deposition rate of the electroless Ni-P coating were studied. The results revealed that a continuous, uniform and low-phosphorous nickel coating was deposited on the surface of the CMCs for 20 min at pH 9.0, plating bath temperature 70 °C. The as-deposited coatings with approximately 4.5 wt.% phosphorus were found to consist of a mix of nano- and microcrystalline phases. The mean particle size of Ni-P nanoparticles on the outer surface of the CMCs was around 11.9 nm. The deposition rate was found to moderately increase with increasing pH, whereas, the phosphorous content of the deposit exhibited a significant decrease. Moreover, the material of the coating underwent a phase transition between an amorphous and a crystalline structure. The thickness of the deposit and the deposition rate may be controlled through careful variation of the coating time and plating bath temperature.
Resumo:
The effect of the nonuniformity of the electron density on the dispersion properties of surface waves propagating in a direction transverse to an external magnetic field is studied for the model of a two-layer plasma structure bounded by a metal. It is shown that the spectra of the waves can be effectively controlled by varying the degree of nonuniformity of the density and the dimensions of the layers.
Resumo:
Effect of near-wall transition regions on the surface wave propagation in a magnetoactive plasma layer bounded by a metal. It is shown that the account for inhomogeneities of plasma density or magnetic field causes an appearance of coupling between surface waves, propagating across magnetic field and localized near difference boundaries of the structure. The resonance damping of surface waves is analyzed too.