106 resultados para assessment during practicum
Resumo:
Intramedullary nailing is the standard fixation method for displaced diaphyseal fractures of the tibia. An optimal nail design should both facilitate insertion and anatomically fit the bone geometry at its final position in order to reduce the risk of stress fractures and malalignments. Due to the nonexistence of suitable commercial software, we developed a software tool for the automated fit assessment of nail designs. Furthermore, we demonstrated that an optimised nail, which fits better at the final position, is also easier to insert. Three-dimensional models of two nail designs and 20 tibiae were used. The fitting was quantified in terms of surface area, maximum distance, sum of surface areas and sum of maximum distances by which the nail was protruding into the cortex. The software was programmed to insert the nail into the bone model and to quantify the fit at defined increment levels. On average, the misfit during the insertion in terms of the four fitting parameters was smaller for the Expert Tibial Nail Proximal bend (476.3 mm2, 1.5 mm, 2029.8 mm2, 6.5 mm) than the Expert Tibial Nail (736.7 mm2, 2.2 mm, 2491.4 mm2, 8.0 mm). The differences were statistically significant (p ≤ 0.05). The software could be used by nail implant manufacturers for the purpose of implant design validation.
Resumo:
BACKGROUND: Registered nurses and midwives play an essential role in detecting patients at risk of deterioration through ongoing assessment and action in response to changing health status. Yet, evidence suggests that clinical deterioration frequently goes unnoticed in hospitalised patients. While much attention has been paid to early warning and rapid response systems, little research has examined factors related to physical assessment skills. OBJECTIVES: To determine a minimum data set of core skills used during nursing assessment of hospitalised patients and identify nurse and workplace predictors of the use of physical assessment to detect patient deterioration. DESIGN: The study used a single-centre, cross-sectional survey design. SETTING and PARTICIPANTS: The study included 434 registered nurses and midwives (Grades 5-7) involved in clinical care of patients on acute care wards, including medicine, surgery, oncology, mental health and maternity service areas, at a 929-bed tertiary referral teaching hospital in Southeast Queensland, Australia. METHODS: We conducted a hospital-wide survey of registered nurses and midwives using the 133-item Physical Assessment Skills Inventory and the 58-item Barriers to Registered Nurses’ Use of Physical Assessment scale. Median frequency for each physical assessment skill was calculated to determine core skills. To explore predictors of core skill utilisation, backward stepwise general linear modelling was conducted. Means and regression coefficients are reported with 95% confidence intervals. A p value < .05 was considered significant for all analyses. RESULTS: Core skills used by most nurses every time they worked included assessment of temperature, oxygen saturation, blood pressure, breathing effort, skin, wound and mental status. Reliance on others and technology (F = 35.77, p < .001), lack of confidence (F = 5.52, p = .02), work area (F = 3.79, p = .002), and clinical role (F = 44.24, p < .001) were significant predictors of the extent of physical assessment skill use. CONCLUSIONS: The increasing acuity of the acute care patient plausibly warrants more than vital signs assessment; however, our study confirms nurses’ physical assessment core skill set is mainly comprised of vital signs. The focus on these endpoints of deterioration as dictated by early warning and rapid response systems may divert attention from and devalue comprehensive nursing assessment that could detect subtle changes in health status earlier in the patient's hospitalisation.
Resumo:
Purpose: Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods: Mean skin temperature (T̅sk) was assessed in thirty healthy males during 30 min rest (24.0± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery(24.0 ± 1.3°C, 56 ± 9%). T̅sk was assessed at four sites using two conductive devices(thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results: Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T̅sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions: These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T̅sk in the presence of, or following, metabolic and environmental induced heat stress.
Resumo:
Group membership is central to social interaction. Within peer groups, social hierarchies and affiliations are matters to which members seriously attend (Corsaro, 2014). Studies of peer groups highlight how status is achieved through oppositional actions. This paper examines the way in which competition and collaboration in a children’s peer group accomplishes status during the production and management of “second stories” (Sacks 1992). We present analysis of the interaction of young boys in a preparatory year playground who are engaged in a single instance of storytelling “rounds”. Analysis highlights the pivotal role of members’ contributions, assessments and receipts in a series of second stories that enact a simultaneously competitive and collaborative local order.
Resumo:
The desire to solve problems caused by socket prostheses in transfemoral amputees and the acquired success of osseointegration in the dental application has led to the introduction of osseointegration in the orthopedic surgery. Since its first introduction in 1990 in Gothenburg Sweden the osseointegrated (OI) orthopedic fixation has proven several benefits[1]. The surgery consists of two surgical procedures followed by a lengthy rehabilitation program. The rehabilitation program after an OI implant includes a specific training period with a short training prosthesis. Since mechanical loading is considered to be one of the key factors that influence bone mass and the osseointegration of bone-anchored implants, the rehabilitation program will also need to include some form of load bearing exercises (LBE). To date there are two frequently used commercially available human implants. We can find proof in the literature that load bearing exercises are performed by patients with both types of OI implants. We refer to two articles, a first one written by Dr. Aschoff and all and published in 2010 in the Journal of Bone and Joint Surgery.[2] The second one presented by Hagberg et al in 2009 gives a very thorough description of the rehabilitation program of TFA fitted with an OPRA implant. The progression of the load however is determined individually according to the residual skeleton’s quality, pain level and body weight of the participant.[1] Patients are using a classical bathroom weighing scale to control the load on the implant during the course of their rehabilitation. The bathroom scale is an affordable and easy-to-use device but it has some important shortcomings. The scale provides instantaneous feedback to the patient only on the magnitude of the vertical component of the applied force. The forces and moments applied along and around the three axes of the implant are unknown. Although there are different ways to assess the load on the implant for instance through inverse dynamics in a motion analysis laboratory [3-6] this assessment is challenging. A recent proof- of-concept study by Frossard et al (2009) showed that the shortcomings of the weighing scale can be overcome by a portable kinetic system based on a commercial transducer[7].
Resumo:
There is debate around the scope of physical assessment skills that should be taught in undergraduate nursing programs. Yet this debate is largely uninformed by evidence on what is learned and practiced by nursing students. This study examined the pattern and correlates of physical assessment skill utilization by 208 graduating nursing students at an Australian university, including measures of knowledge, frequency of use and perceived barriers to physical assessment skills during clinical practice. Of the 126 skills surveyed, on average only five were used every time students practiced. Core skills reflected inspection or general observation of the patient; none involved complex palpation, percussion or auscultation. Skill utilization was also shaped by specialty area. Most skills (70%) were, on average, never performed or learned and students perceived nursing physical assessment was marginalized in both university and workplace contexts. Lack of confidence was thus a significant barrier to use of skills. Based on these findings we argue that the current debate must shift to how we might best support students to integrate comprehensive physical assessment into nursing practice.
Resumo:
Pollution on electrical insulators is one of the greatest causes of failure of substations subjected to high levels of salinity and environmental pollution. Considering leakage current as the main indicator of pollution on insulators, this paper focus on establishing the effect of the environmental conditions on the risk of failure due to pollution on insulators and determining the significant change in the magnitude of the pollution on the insulators during dry and humid periods. Hierarchical segmentation analysis was used to establish the effect of environmental conditions on the risk of failure due to pollution on insulators. The Kruskal-Wallis test was utilized to determine the significant changes in the magnitude of the pollution due to climate periods. An important result was the discovery that leakage current was more common on insulators during dry periods than humid ones. There was also a higher risk of failure due to pollution during dry periods. During the humid period, various temperatures and wind directions produced a small change in the risk of failure. As a technical result, operators of electrical substations can now identify the cause of an increase in risk of failure due to pollution in the area. The research provides a contribution towards the behaviour of the leakage current under conditions similar to those of the Colombian Caribbean coast and how they affect the risk of failure of the substation due to pollution.
Resumo:
BACKGROUND: Monitoring studies revealed high concentrations of pesticides in the drainage canal of paddy fields. It is important to have a way to predict these concentrations in different management scenarios as an assessment tool. A simulation model for predicting the pesticide concentration in a paddy block (PCPF-B) was evaluated and then used to assess the effect of water management practices for controlling pesticide runoff from paddy fields. RESULTS: The PCPF-B model achieved an acceptable performance. The model was applied to a constrained probabilistic approach using the Monte Carlo technique to evaluate the best management practices for reducing runoff of pretilachlor into the canal. The probabilistic model predictions using actual data of pesticide use and hydrological data in the canal showed that the water holding period (WHP) and the excess water storage depth (EWSD) effectively reduced the loss and concentration of pretilachlor from paddy fields to the drainage canal. The WHP also reduced the timespan of pesticide exposure in the drainage canal. CONCLUSIONS: It is recommended that: (1) the WHP be applied for as long as possible, but for at least 7 days, depending on the pesticide and field conditions; (2) an EWSD greater than 2 cm be maintained to store substantial rainfall in order to prevent paddy runoff, especially during the WHP.
Resumo:
This chapter provides an overview of the Japanese regulatory issues regarding pesticide use in rice paddies and an introduction of the new pesticide registration program. In addition, the experience of the environmental monitoring of pesticides and the modeling approaches used for the calculation of predicted environmental concentrations (PECs) in surface water and ground water systems adjacent to rice paddies in Japan are also discussed. Japan has been one of the major pesticide users in the world. Although having a long history in rice cultivation, the pesticide exposure assessment for paddy rice production received less attention compared with EU and US. Applications of up-to-date techniques and the development of realistic assessment procedures under specific climatic conditions as well as mitigation management practices for controlling pesticide contamination are important for an environmental-friendly rice production. Through the international cooperation and research exchanges, advances in pesticide risk assessment for rice paddies in Asian region and other rice-growing areas in the world would contribute to sustainable rice production. Transplanting of rice seedlings grows almost all rice paddies in Japan. The land preparation starts around April and June, and the harvest season lasts from August to October depending on the region and the rice varieties. Most of the rice paddies are treated with herbicides and other crop protection products, such as fungicides and insecticides that are applied during the crop season accordingly. Newly developed insecticides and fungicides are also applied during seedbed preparation.
Resumo:
Background Bien Hoa and Da Nang airbases were bulk storages for Agent Orange during the Vietnam War and currently are the two most severe dioxin hot spots. Objectives This study assesses the health risk of exposure to dioxin through foods for local residents living in seven wards surrounding these airbases. Methods This study follows the Australian Environmental Health Risk Assessment Framework to assess the health risk of exposure to dioxin in foods. Forty-six pooled samples of commonly consumed local foods were collected and analyzed for dioxin/furans. A food frequency and Knowledge–Attitude–Practice survey was also undertaken at 1000 local households, various stakeholders were involved and related publications were reviewed. Results Total dioxin/furan concentrations in samples of local “high-risk” foods (e.g. free range chicken meat and eggs, ducks, freshwater fish, snail and beef) ranged from 3.8 pg TEQ/g to 95 pg TEQ/g, while in “low-risk” foods (e.g. caged chicken meat and eggs, seafoods, pork, leafy vegetables, fruits, and rice) concentrations ranged from 0.03 pg TEQ/g to 6.1 pg TEQ/g. Estimated daily intake of dioxin if people who did not consume local high risk foods ranged from 3.2 pg TEQ/kg bw/day to 6.2 pg TEQ/kg bw/day (Bien Hoa) and from 1.2 pg TEQ/kg bw/day to 4.3 pg TEQ/kg bw/day (Da Nang). Consumption of local high risk foods resulted in extremely high dioxin daily intakes (60.4–102.8 pg TEQ/kg bw/day in Bien Hoa; 27.0–148.0 pg TEQ/kg bw/day in Da Nang). Conclusions Consumption of local “high-risk” foods increases dioxin daily intakes far above the WHO recommended TDI (1–4 pg TEQ/kg bw/day). Practicing appropriate preventive measures is necessary to significantly reduce exposure and health risk.
Resumo:
Aerial surveys conducted using manned or unmanned aircraft with customized camera payloads can generate a large number of images. Manual review of these images to extract data is prohibitive in terms of time and financial resources, thus providing strong incentive to automate this process using computer vision systems. There are potential applications for these automated systems in areas such as surveillance and monitoring, precision agriculture, law enforcement, asset inspection, and wildlife assessment. In this paper, we present an efficient machine learning system for automating the detection of marine species in aerial imagery. The effectiveness of our approach can be credited to the combination of a well-suited region proposal method and the use of Deep Convolutional Neural Networks (DCNNs). In comparison to previous algorithms designed for the same purpose, we have been able to dramatically improve recall to more than 80% and improve precision to 27% by using DCNNs as the core approach.
Resumo:
A profluorescent nitroxide possessing an isoindoline nitroxide moiety linked to a perylene fluorophore was developed to monitor radical mediated degradation of melamine-formaldehyde crosslinked polyester coil coatings in an industry standard accelerated weathering tester. Trapping of polyester-derived radicals (most likely C-radicals) that are generated during polymer degradation leads to fluorescent closed-shell alkoxy amines, which was used to obtain time-dependent degradation profiles to assess the relative stability of different polyesters towards weathering. The nitroxide probe couples excellent thermal stability and satisfactory photostability with high sensitivity and enables detection of free radical damage in polyesters under conditions that mimic exposure to the environment on a time scale of hours rather than months or years required by other testing methods. There are indications that the profluorescent nitroxide undergoes partial photo-degradation in the absence of polymer-derived radicals. Unexpectedly, it was also found that UV-induced fragmentation of the NO–C bond in closed-shell alkoxy amines leads to regeneration of the profluorescent nitroxide and the respective C-radical. The maximum fluorescence intensity that could be achieved with a given probe concentration is therefore not only determined by the amount of polyester radicals formed during accelerated weathering, but also by the light-driven side reactions of the profluorescent nitroxide and the corresponding alkoxy amine radical trapping products. Studies to determine the optimum probe concentration in the polymer matrix revealed that aggregation and re-absorption effects lowered the fluorescence intensity at higher concentrations of the profluorescent nitroxide, but too low probe concentrations, where these effects would be avoided, were not sufficient to trap the amount of polyester radicals formed upon weathering. The optimized experimental conditions were used to assess the impact of temperature and UV irradiance on polymer degradation during accelerated weathering.
Resumo:
To evaluate the underreporting rate of death -cause data in Shandong province during 2012 to 2013 by capture -mark -recapture method and to provide the base for health strategy. Methods All counties were divided into 5 stratifications according the death rates of 2012, and 14 counties were selected, then 3 towns or streets were selected in each country, 10 villages or neighborhood committees were selected in each town (street). The death data collected from security bureau and civil affairs bureau were compared with the reporting death data from the National Cause of Death Surveillance, and the underreporting rate was calculated. Results In present study, 6 929 death cases were collected, it was found that 1 556 cases were underreported. The death cases estimated by CMR method were 6 227 cases (95%CI: 7 593-7 651), and the average underreporting rate was 23.15%. There were significantly differences between different stratifications (P<0.01). The underreporting rate in 0-4 years old group was 56.93%, the male underreporting rate was 22.31% and the female underreporting rate was 24.09%. There was no significant difference between male and female groups (P>0.05). Conclusion There is an obvious underreport in the cause of death surveillance of Shandong province, and the underreporting rates are different among the 5 stratifications. The underreporting rate is higher in 0-4 years old group, and the investigation of the death cause surveillance for young residents is not perfect in some countries. The investigation quality of the death cause surveillance should be improved, increasing the integrity of the report data and adjusting the mortalities in different stratifications for obtaining a accurate mortality in Shandong province.
Resumo:
Ambient ultrafine particle number concentrations (PNC) have inhomogeneous spatio-temporal distributions and depend on a number of different urban factors, including background conditions and distant sources. This paper quantitatively compares exposure to ambient ultrafine particles at urban schools in two cities in developed countries, with high insolation climatic conditions, namely Brisbane (Australia) and Barcelona (Spain). The analysis used comprehensive indoor and outdoor air quality measurements at 25 schools in Brisbane and 39 schools in Barcelona. PNC modes were analysed with respect to ambient temperature, land use and urban characteristics, combined with the measured elemental carbon concentrations, NOx (Brisbane) and NO2 (Barcelona). The trends and modes of the quantified weekday average daily cycles of ambient PNC exhibited significant differences between the two cities. PNC increases were observed during traffic rush hours in both cases. However, the mid-day peak was dominant in Brisbane schools and had the highest contribution to total PNC for both indoors and outdoors. In Barcelona, the contribution from traffic was highest for ambient PNC, while the mid-day peak had a slightly higher contribution for indoor concentrations. Analysis of the relationships between PNC and land use characteristics in Barcelona schools showed a moderate correlation with the percentage of road network area and an anti-correlation with the percentage of green area. No statistically significant correlations were found for Brisbane. Overall, despite many similarities between the two cities, school-based exposure patterns were different. The main source of ambient PNC at schools was shown to be traffic in Barcelona and mid-day new particle formation in Brisbane. The mid-day PNC peak in Brisbane could have been driven by the combined effect of background and meteorological conditions, as well as other local/distant sources. The results have implications for urban development, especially in terms of air quality mitigation and management at schools.
Resumo:
In this chapter we propose that there are certain conditions that enable the agency of pre-service teachers to enact curriculum decision-making within their pedagogical relationships with their supervising teachers as they endeavour to embed Indigenous knowledges (IK) during the teaching practicum. The case study, underpinned by decolonising methodologies, centred upon pre-service teacher preparation at one Australian university, where we investigated how role modelling in urban and remote schools occurred in the learning and teaching relationships between pre-service teachers on practicum and their supervising teachers. This chapter draws from an Office of Learning and Teaching (OLT) sponsored project at one Australian university; a full report on this project has been documented (see McLaughlin, Whatman and Nielsen, 2014). We commence with a discussion of decolonising and critical pedagogical spaces as the conceptual framework for the embedding Indigenous knowledges and perspectives in curricula and pedagogy. Our focus then shifts to a contextual overview of the development of Indigenous Knowledges (IK) in Australian school and university curriculum, providing a standpoint from which to consider the unfolding case study.