331 resultados para Y402H POLYMORPHISM
Resumo:
Overweight and obesity are strongly associated with endometrial cancer. Several independent genome-wide association studies recently identified two common polymorphisms, FTO rs9939609 and MC4R rs17782313, that are linked to increased body weight and obesity. We examined the association of FTO rs9939609 and MC4R rs17782313 with endometrial cancer risk in a pooled analysis of nine case-control studies within the Epidemiology of Endometrial Cancer Consortium (E2C2). This analysis included 3601 non-Hispanic white women with histologically-confirmed endometrial carcinoma and 5275 frequency-matched controls. Unconditional logistic regression models were used to assess the relation of FTO rs9939609 and MC4R rs17782313 genotypes to the risk of endometrial cancer. Among control women, both the FTO rs9939609 A and MC4R rs17782313 C alleles were associated with a 16% increased risk of being overweight (p = 0.001 and p = 0.004, respectively). In case-control analyses, carriers of the FTO rs9939609 AA genotype were at increased risk of endometrial carcinoma compared to women with the TT genotype [odds ratio (OR) = 1.17; 95% confidence interval (CI): 1.03–1.32, p = 0.01]. However, this association was no longer apparent after adjusting for body mass index (BMI), suggesting mediation of the gene-disease effect through body weight. The MC4R rs17782313 polymorphism was not related to endometrial cancer risk (per allele OR = 0.98; 95% CI: 0.91–1.06; p = 0.68). FTO rs9939609 is a susceptibility marker for white non-Hispanic women at higher risk of endometrial cancer. Although FTO rs9939609 alone might have limited clinical or public health significance for identifying women at high risk for endometrial cancer beyond that of excess body weight, further investigation of obesity-related genetic markers might help to identify the pathways that influence endometrial carcinogenesis.
Resumo:
To test the importance of the dopamine D2 receptor (DRD2) region in nicotine dependence, 150 smokers and 228 controls were genotyped for the DRD2 C957T, -141delC and ANKK1 TaqIA polymorphisms (rs6277, rs1799732 and rs1800497, respectively). The -141delC SNP did not show any association but both the C957T and TaqIA SNPs showed association at the allele, genotype, haplotype and combined genotype levels. The 957C/TaqI A1 haplotype was more than 3.5 times as likely to be associated with nicotine dependence compared with the 957T/TaqI A1 haplotype (P = 0.003). Analysis of the combined genotypes of both SNPs revealed that individuals who were homozygous for the 957C-allele (CC) and had either one or two copies of the TaqI A1-allele were 3.3 times as likely to have nicotine dependence compared to all other genotype combinations (P = 0.0003) and that these genotypes accounted for approximately 13% of the susceptibility to nicotine addiction in our population. Our findings suggest that the DRD2 C957T polymorphism and the ANKK1 TaqIA polymorphism are key contributors to the genetic susceptibility to nicotine dependence.
Resumo:
AIMS: As recent conflicting reports describe a genetic association between both the C- and the T-alleles of the dopamine D2 receptor (DRD2) C957T polymorphism (rs6277) in alcohol-dependent subjects, our aim was to examine this polymorphism and TaqIA (rs1800497) in Australian alcohol-dependent subjects. METHODS: The C957T polymorphism was genotyped in 228 patients with alcohol dependence (72 females and 156 males) and 228 healthy controls. RESULTS: The C-allele and C/C genotype of C957T was associated with alcohol dependence, whereas the TaqIA polymorphism was not. When analysed separately for C957T, males showed an even stronger association with the C-allele and females showed no association. The C957T and TaqIA haplotyping revealed a strong association with alcohol dependence and a double-genotype analysis (combining C957T and TaqIA genotypes) revealed that the relative risk of different genotypes varied by up to 27-fold with the TT/A1A2 having an 8.5-fold lower risk of alcohol dependence than other genotypes. CONCLUSION: Decreased DRD2 binding associated with the C-allele of the DRD2 C957T polymorphism is likely to be important in the underlying pathophysiology of at least some forms of alcohol dependence, and this effect appears to be limited to males only.
Resumo:
Siamese mud carp (Henichorynchus siamensis) is a freshwater teleost of high economic importance in the Mekong River Basin. However, genetic data relevant for delineating wild stocks for management purposes currently are limited for this species. Here, we used 454 pyrosequencing to generate a partial genome survey sequence (GSS) dataset to develop simple sequence repeat (SSR) markers from H. siamensis genomic DNA. Data generated included a total of 65,954 sequence reads with average length of 264 nucleotides, of which 2.79% contain SSR motifs. Based on GSS-BLASTx results, 10.5% of contigs and 8.1% singletons possessed significant similarity (E value < 10–5) with the majority matching well to reported fish sequences. KEGG analysis identified several metabolic pathways that provide insights into specific potential roles and functions of sequences involved in molecular processes in H. siamensis. Top protein domains detected included reverse transcriptase and the top putative functional transcript identified was an ORF2-encoded protein. One thousand eight hundred and thirty seven sequences containing SSR motifs were identified, of which 422 qualified for primer design and eight polymorphic loci have been tested with average observed and expected heterozygosity estimated at 0.75 and 0.83, respectively. Regardless of their relative levels of polymorphism and heterozygosity, microsatellite loci developed here are suitable for further population genetic studies in H. siamensis and may also be applicable to other related taxa.
Resumo:
Maize streak virus (MSV) contributes significantly to the problem of extremely low African maize yields. Whilst a diverse range of MSV and MSV-like viruses are endemic in sub-Saharan Africa and neighbouring islands, only a single group of maize-adapted variants - MSV subtypes A1 -A6 - causes severe enough disease in maize to influence yields substantially. In order to assist in designing effective strategies to control MSV in maize, a large survey covering 155 locations was conducted to assess the diversity, distribution and genetic characteristics of the Ugandan MSV-A population. PCR-restriction fragment-length polymorphism analyses of 391 virus isolates identified 49 genetic variants. Sixty-two full-genome sequences were determined, 52 of which were detectably recombinant. All but two recombinants contained predominantly MSV-A1-like sequences. Of the ten distinct recombination events observed, seven involved inter-MSV-A subtype recombination and three involved intra-MSV-A1 recombination. One of the intra-MSV-A1 recombinants, designated MSV-A1 UgIII, accounted for >60% of all MSV infections sampled throughout Uganda. Although recombination may be an important factor in the emergence of novel geminivirus variants, it is demonstrated that its characteristics in MSV are quite different from those observed in related African cassava-infecting geminivirus species. © 2007 SGM.
Resumo:
Background Post traumatic stress disorder (PTSD) and depressive disorder are over represented in combat veterans. Veterans with both disorders have an increased risk of suicide. The nitric oxide synthase 1 adaptor protein (NOS1AP) gene, which modulates stress-evoked N-methyl-D-aspartate (NMDA) activity, was investigated in combat veterans. Methods A comprehensive genetic analysis of NOS1AP and its association with PTSD was investigated in Vietnam combat veterans with PTSD (n=121) and a group of healthy control individuals (n=237). PTSD patients were assessed for symptom severity and level of depression using the Mississippi Scale for Combat-Related PTSD and the Beck Depression Inventory-II (BDI). Results The G allele of NOS1AP SNP rs386231 was significantly associated with PTSD (p = 0.002). Analysis of variance revealed significant differences in BDI-II and Mississippi scores between genotypes for rs386231 with the GG genotype associated with increased severity of depression (p = 0.002 F = 6.839) and higher Mississippi Scale for Combat-Related PTSD scores (p = 0.033). Haplotype analysis revealed that the C/G haplotype (rs451275/rs386231) was significantly associated with PTSD (p = 0.001). Limitations The sample sizes in our study were not sufficient to detect SNP associations with very small effects. In addition the study was limited by its cross sectional design. Conclusions This is the first study reporting that a variant of the NOS1AP gene is associated with PTSD. Our data also suggest that a genetic variant in NOS1AP may increase the susceptibility to severe depression in patients with PTSD and increased risk for suicide.
Resumo:
KPNA3 is a gene that has been linked to schizophrenia susceptibility. In this study we investigated the possible association between KPNA3 variation and schizophrenia. To investigate a wider role of KPNA3 across psychiatric disorders we also analysed major depression, PTSD, nicotine dependent, alcohol dependent and opiate dependent cohorts. Using a haplotype block-based gene-tagging approach we genotyped six KPNA3 single nucleotide polymorphisms (SNPs) in 157 schizophrenia patients, 121 post-traumatic stress disorder patients, 120 opiate dependent patients, 231 alcohol dependent patients, 147 nicotine dependent patients and 266 major depression patients. One SNP rs2273816 was found to be significantly associated with schizophrenia, opiate dependence and alcohol dependence at the genotype and allele level. Major depression was also associated with rs2273816 but only at the allele level. Our study suggests that KPNA3 may contribute to the genetic susceptibility to schizophrenia as well as other psychiatric disorders.
Resumo:
Background: A random QTL effects model uses a function of probabilities that two alleles in the same or in different animals at a particular genomic position are identical by descent (IBD). Estimates of such IBD probabilities and therefore, modeling and estimating QTL variances, depend on marker polymorphism, strength of linkage and linkage disequilibrium of markers and QTL, and the relatedness of animals in the pedigree. The effect of relatedness of animals in a pedigree on IBD probabilities and their characteristics was examined in a simulation study. Results: The study based on nine multi-generational family structures, similar to a pedigree structure of a real dairy population, distinguished by an increased level of inbreeding from zero to 28 % across the studied population. Highest inbreeding level in the pedigree, connected with highest relatedness, was accompanied by highest IBD probabilities of two alleles at the same locus, and by lower relative variation coefficients. Profiles of correlation coefficients of IBD probabilities along the marked chromosomal segment with those at the true QTL position were steepest when the inbreeding coefficient in the pedigree was highest. Precision of estimated QTL location increased with increasing inbreeding and pedigree relatedness. A method to assess the optimum level of inbreeding for QTL detection is proposed, depending on population parameters. Conclusions: An increased overall relationship in a QTL mapping design has positive effects on precision of QTL position estimates. But the relationship of inbreeding level and the capacity for QTL detection depending on the recombination rate of QTL and adjacent informative marker is not linear. © 2010 Freyer et al., licensee BioMed Central Ltd.
Resumo:
Population-wide associations between loci due to linkage disequilibrium can be used to map quantitative trait loci (QTL) with high resolution. However, spurious associations between markers and QTL can also arise as a consequence of population stratification. Statistical methods that cannot differentiate between loci associations due to linkage disequilibria from those caused in other ways can render false-positive results. The transmission-disequilibrium test (TDT) is a robust test for detecting QTL. The TDT exploits within-family associations that are not affected by population stratification. However, some TDTs are formulated in a rigid-form, with reduced potential applications. In this study we generalize TDT using mixed linear models to allow greater statistical flexibility. Allelic effects are estimated with two independent parameters: one exploiting the robust within-family information and the other the potentially biased between-family information. A significant difference between these two parameters can be used as evidence for spurious association. This methodology was then used to test the effects of the fourth melanocortin receptor (MC4R) on production traits in the pig. The new analyses supported the previously reported results; i.e., the studied polymorphism is either causal of in very strong linkage disequilibrium with the causal mutation, and provided no evidence for spurious association.
Resumo:
This study used next generation sequencing technologies to investigate growth in a cultured crustacean. The objective was to identify and characterise specific gene loci that contribute important phenotypic variation to growth as well as to develop a large set of SNP markers in candidate genes for assessing correlations between specific mutations and individual growth performance. The genomic dataset generated provides a fundamental resource for application in future crustacean stock improvement programs. Ultimately, the data can be applied to development of culture lines with improved growth performance.
Resumo:
We employed a Hidden-Markov-Model (HMM) algorithm in loss of heterozygosity (LOH) analysis of high-density single nucleotide polymorphism (SNP) array data from Non-Hodgkin’s lymphoma (NHL) entities, follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL). This revealed a high frequency of LOH over the chromosomal region 11p11.2, containing the gene encoding the protein tyrosine phosphatase receptor type J (PTPRJ). Although PTPRJ regulates components of key survival pathways in B-cells (i.e., BCR, MAPK, and PI3K signaling), its role in B-cell development is poorly understood. LOH of PTPRJ has been described in several types of cancer but not in any hematological malignancy. Interestingly, FL cases with LOH exhibited down-regulation of PTPRJ, in contrast no significant variation of expression was shown in DLBCLs. In addition, sequence screening in Exons 5 and 13 of PTPRJ identified the G973A (rs2270993), T1054C (rs2270992), A1182C (rs1566734), and G2971C (rs4752904) coding SNPs (cSNPs). The A1182 allele was significantly more frequent in FLs and in NHLs with LOH. Significant over-representation of the C1054 (rs2270992) and the C2971 (rs4752904) alleles were also observed in LOH cases. A haplotype analysis also revealed a significant lower frequency of haplotype GTCG in NHL cases, but it was only detected in cases with retention. Conversely, haplotype GCAC was over-representated in cases with LOH. Altogether, these results indicate that the inactivation of PTPRJ may be a common lymphomagenic mechanism in these NHL subtypes and that haplotypes in PTPRJ gene may play a role in susceptibility to NHL, by affecting activation of PTPRJ in these B-cell lymphomas.
Resumo:
Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10−11, OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.
Resumo:
Objectives To investigate the frequency of the ACTN3 R577X polymorphism in elite endurance triathletes, and whether ACTN3 R577X is significantly associated with performance time. Design Cross-sectional study. Methods Saliva samples, questionnaires, and performance times were collected for 196 elite endurance athletes who participated in the 2008 Kona Ironman championship triathlon. Athletes were of predominantly North American, European, and Australian origin. A one-way analysis of variance was conducted to compare performance times between genotype groups. Multiple linear regression analysis was performed to model the effect of questionnaire variables and genotype on performance time. Genotype and allele frequencies were compared to results from different populations using the chi-square test. Results Performance time did not significantly differ between genotype groups, and age, sex, and continent of origin were significant predictors of finishing time (age and sex: p < 5 × 10−6; continent: p = 0.003) though genotype was not. Genotype and allele frequencies obtained (RR 26.5%, RX 50.0%, XX 23.5%, R 51.5%, X 48.5%) were found to be not significantly different from Australian, Spanish, and Italian endurance athletes (p > 0.05), but were significantly different from Kenyan, Ethiopian, and Finnish endurance athletes (p < 0.01). Conclusions Genotype and allele frequencies agreed with those reported for endurance athletes of similar ethnic origin, supporting previous findings for an association between 577X allele and endurance. However, analysis of performance time suggests that ACTN3 does not alone influence endurance performance, or may have a complex effect on endurance performance due to a speed/endurance trade-off.
Resumo:
Background Hyperhomocysteinemia as a consequence of the MTHFR 677 C > T variant is associated with cardiovascular disease and stroke. Another factor that can potentially contribute to these disorders is a depleted nitric oxide level, which can be due to the presence of eNOS +894 G > T and eNOS −786 T > C variants that make an individual more susceptible to endothelial dysfunction. A number of genotyping methods have been developed to investigate these variants. However, simultaneous detection methods using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis are still lacking. In this study, a novel multiplex PCR-RFLP method for the simultaneous detection of MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants was developed. A total of 114 healthy Malay subjects were recruited. The MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants were genotyped using the novel multiplex PCR-RFLP and confirmed by DNA sequencing as well as snpBLAST. Allele frequencies of MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C were calculated using the Hardy Weinberg equation. Methods The 114 healthy volunteers were recruited for this study, and their DNA was extracted. Primer pair was designed using Primer 3 Software version 0.4.0 and validated against the BLAST database. The primer specificity, functionality and annealing temperature were tested using uniplex PCR methods that were later combined into a single multiplex PCR. Restriction Fragment Length Polymorphism (RFLP) was performed in three separate tubes followed by agarose gel electrophoresis. PCR product residual was purified and sent for DNA sequencing. Results The allele frequencies for MTHFR 677 C > T were 0.89 (C allele) and 0.11 (T allele); for eNOS +894 G > T, the allele frequencies were 0.58 (G allele) and 0.43 (T allele); and for eNOS −786 T > C, the allele frequencies were 0.87 (T allele) and 0.13 (C allele). Conclusions Our PCR-RFLP method is a simple, cost-effective and time-saving method. It can be used to successfully genotype subjects for the MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants simultaneously with 100% concordance from DNA sequencing data. This method can be routinely used for rapid investigation of the MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants.