193 resultados para Wheatstone bridge


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maintenance of bridge structures is a major issue for the Queensland Department of Main Roads. In the previous phase of this CRC project an initial approach was made towards the development of a program for lifetime prediction of metallic bridge components. This involved the analysis of five representative bridge structures with respect to salt deposition (a major contributor to metallic corrosion) to determine common elements to be used as “cases” - those defined for buildings are not applicable. The five bridges analysed included the Gladstone Port Access Road Overpass, Stewart Road Overpass, South Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The project has further developed two programs for the industry partners related to service life prediction and salt deposition. The program for Queensland Department of Main Roads which predicts salt deposition on different bridge structures at any point in Queensland has been further refined by looking at more variables. It was found that the height of the bridge significantly affects the salt deposition levels only when very close to the coast. However the effect of natural cleaning of salt by rainfall was incorporated into the program. The user interface allows selection of a location in Queensland, followed by a bridge component. The program then predicts the annual salt deposition rate and rates the likely severity of the environment. The service life prediction program for the Queensland Department of Public Works has been expanded to include 10 common building components, in a variety of environments. Data mining procedures have been used to develop the program and increase the usefulness of the application. A Query Based Learning System (QBLS) has been developed which is based on a data-centric model with extensions to provide support for user interaction. The program is based on number of sources of information about the service life of building components. These include the Delphi survey, the CSIRO Holistic model and a school survey. During the project, the Holistic model was modified for each building component and databases generated for the locations of all Queensland schools. Experiments were carried out to verify and provide parameters for the modelling. These included instrumentation of a downpipe, measurements on pH and chloride levels in leaf litter, EIS measurements and chromate leaching from Colorbond materials and dose tests to measure corrosion rates of new materials. A further database was also generated for inclusion in the program through a large school survey. Over 30 schools in a range of environments from tropical coastal to temperate inland were visited and the condition of the building components rated on a scale of 0-5. The data was analysed and used to calculate an average service life for each component/material combination in the environments, where sufficient examples were available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durability issues of reinforced concrete construction cost millions of dollars in repair or demolition. Identification of the causes of degradation and a prediction of service life based on experience, judgement and local knowledge has limitations in addressing all the associated issues. The objective of this CRC CI research project is to develop a tool that will assist in the interpretation of the symptoms of degradation of concrete structures, estimate residual capacity and recommend cost effective solutions. This report is a documentation of the research undertaken in connection with this project. The primary focus of this research is centred on the case studies provided by Queensland Department of Main Roads (QDMR) and Brisbane City Council (BCC). These organisations are endowed with the responsibility of managing a huge volume of bridge infrastructure in the state of Queensland, Australia. The main issue to be addressed in managing these structures is the deterioration of bridge stock leading to a reduction in service life. Other issues such as political backlash, public inconvenience, approach land acquisitions are crucial but are not within the scope of this project. It is to be noted that deterioration is accentuated by aggressive environments such as salt water, acidic or sodic soils. Carse, 2005, has noted that the road authorities need to invest their first dollars in understanding their local concretes and optimising the durability performance of structures and then look at potential remedial strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Designing and estimating civil concrete structures is a complex process which to many practitioners is tied to manual or semi-manual processes of 2D design and cannot be further improved by automated, interacting design-estimating processes. This paper presents a feasibility study for the development an automated estimator for concrete bridge design. The study offers a value proposition: an efficient automated model-based estimator can add value to the whole bridge design-estimating process, i.e., reducing estimation errors, shortening the duration of success estimates, and increasing the benefit of doing cost estimation when compared with the current practice. This is then followed by a description of what is in an efficient automated model-based estimator and how it should be used. Finally the process of model-based estimating is compared with the current practice to highlight the values embedded in the automated processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effective management of bridge stock involves making decisions as to when to repair, remedy, or do nothing, taking into account the financial and service life implications. Such decisions require a reliable diagnosis as to the cause of distress and an understanding of the likely future degradation. Such diagnoses are based on a combination of visual inspections, laboratory tests on samples and expert opinions. In addition, the choice of appropriate laboratory tests requires an understanding of the degradation mechanisms involved. Under these circumstances, the use of expert systems or evaluation tools developed from “realtime” case studies provides a promising solution in the absence of expert knowledge. This paper addresses the issues in bridge infrastructure management in Queensland, Australia. Bridges affected by alkali silica reaction and chloride induced corrosion have been investigated and the results presented using a mind mapping tool. The analysis highights that several levels of rules are required to assess the mechanism causing distress. The systematic development of a rule based approach is presented. An example of this application to a case study bridge has been used to demonstrate that preliminary results are satisfactory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reinforced concrete structures are susceptible to a variety of deterioration mechanisms due to creep and shrinkage, alkali-silica reaction (ASR), carbonation, and corrosion of the reinforcement. The deterioration problems can affect the integrity and load carrying capacity of the structure. Substantial research has been dedicated to these various mechanisms aiming to identify the causes, reactions, accelerants, retardants and consequences. This has improved our understanding of the long-term behaviour of reinforced concrete structures. However, the strengthening of reinforced concrete structures for durability has to date been mainly undertaken after expert assessment of field data followed by the development of a scheme to both terminate continuing degradation, by separating the structure from the environment, and strengthening the structure. The process does not include any significant consideration of the residual load-bearing capacity of the structure and the highly variable nature of estimates of such remaining capacity. Development of performance curves for deteriorating bridge structures has not been attempted due to the difficulty in developing a model when the input parameters have an extremely large variability. This paper presents a framework developed for an asset management system which assesses residual capacity and identifies the most appropriate rehabilitation method for a given reinforced concrete structure exposed to aggressive environments. In developing the framework, several industry consultation sessions have been conducted to identify input data required, research methodology and output knowledge base. Capturing expert opinion in a useable knowledge base requires development of a rule based formulation, which can subsequently be used to model the reliability of the performance curve of a reinforced concrete structure exposed to a given environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper aims to develop the methodology and strategy for concurrent finite element modeling of civil infrastructures at the different scale levels for the purposes of analyses of structural deteriorating. The modeling strategy and method were investigated to develop the concurrent multi-scale model of structural behavior (CMSM-of-SB) in which the global structural behavior and nonlinear damage features of local details in a large complicated structure could be concurrently analyzed in order to meet the needs of structural-state evaluation as well as structural deteriorating. In the proposed method, the “large-scale” modeling is adopted for the global structure with linear responses between stress and strain and the “small-scale” modeling is available for nonlinear damage analyses of the local welded details. A longitudinal truss in steel bridge decks was selected as a case to study how a CMSM-of-SB was developed. The reduced-scale specimen of the longitudinal truss was studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details, while the multi-scale models using constraint equations and substructuring were developed for numerical simulation. The comparison of dynamic and static response between the calculated results by different models indicated that the proposed multi-scale model was found to be the most efficient and accurate. The verification of the model with results from the tested truss under the specific loading showed that, responses at the material scale in the vicinity of local details as well as structural global behaviors could be obtained and fit well with the measured results. The proposed concurrent multi-scale modeling strategy and implementation procedures were applied to Runyang cable-stayed bridge (RYCB) and the CMSM-of-SB of the bridge deck system was accordingly constructed as a practical application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is a continuation of the paper titled “Concurrent multi-scale modeling of civil infrastructure for analyses on structural deteriorating—Part I: Modeling methodology and strategy” with the emphasis on model updating and verification for the developed concurrent multi-scale model. The sensitivity-based parameter updating method was applied and some important issues such as selection of reference data and model parameters, and model updating procedures on the multi-scale model were investigated based on the sensitivity analysis of the selected model parameters. The experimental modal data as well as static response in terms of component nominal stresses and hot-spot stresses at the concerned locations were used for dynamic response- and static response-oriented model updating, respectively. The updated multi-scale model was further verified to act as the baseline model which is assumed to be finite-element model closest to the real situation of the structure available for the subsequent arbitrary numerical simulation. The comparison of dynamic and static responses between the calculated results by the final model and measured data indicated the updating and verification methods applied in this paper are reliable and accurate for the multi-scale model of frame-like structure. The general procedures of multi-scale model updating and verification were finally proposed for nonlinear physical-based modeling of large civil infrastructure, and it was applied to the model verification of a long-span bridge as an actual engineering practice of the proposed procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past century, significant improvements in the prevention, detection and treatment of infectious disease have positively impacted upon quality and quantity of life for many people worldwide. Despite this progress, there are large numbers of people currently living in developing regions of the world where infectious disease continues unabated. SurfAid International is a humanitarian organisation that has brought significant health improvements to the people living on the Mentawai and Nias islands of Indonesia. The SurfAid International Schools Program aims to develop global citizenship and social responsibility by providing a bridge between school settings and the critical work of SurfAid International. This paper provides a rationale for the development of contextualised school based programs and identifies potential impact upon the thoughts and actions of young people in schools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shrinkage cracking is commonly observed in concrete flat structures such as highway pavements, slabs, and bridge decks. Crack spacing due to shrinkage has received considerable attention for many years [1-3]. However, some aspects concerning the mechanism of crack spacing still remain un-clear. Though it is well known that the interval of the cracks generally falls with a range, no satisfactory explanation has been put forward as to why the minimum spacing exists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

President’s Message Hello fellow AITPM members, Well I can’t believe it’s already October! My office is already organising its end of year function and looking to plan for 2010. Our whole School is moving to a different building next year, with the lovely L block eventually making way for a new shiny one. Those of you who have entered the Brisbane CBD from the south side, across the Captain Cook Bridge, would know L block as the big 9 storey brick and concrete Lego block ode to 1970’s functional architecture, which greets you on the right hand side. Onto traffic matters: an issue that has been tossing around in my mind of late is that of speed. I know I am growing older and may be prematurely becoming a “grumpy old man”, but everyone around me locally seems to be accelerating off from the stop line much faster than I was taught to for economical driving, both here and in the United States (yes they made my wife and me resit our written and practical driving tests when we lived there). People here in Australia also seem to be driving right on top of the posted speed limit, on whichever part of the Road Hierarchy, whether urban or rural. I was also taught on both sides of the planet that the posted speed limit is a maximum legal speed, not the recommended driving speed. This message did seem to sink in to the American drivers around me when we lived in Oregon - where people did appear to drive more cautiously. Further, posted speed limits in Oregon were, and I presume still are, set more conservative by about 5mph or 10km/h than Australian limits, for any given part of the Road Hierarchy. Another excellent speed limit treatment used in Oregon was in school zones, where reduced speed limits applied “when children are present” rather than during prescribed hours on school days. This would be especially useful here in Australia, where a lot of extra-curricular activities take place around schools outside of the prescribed speed limit hours. Before and after hours school care is on the increase (with parents dropping and collecting children near dawn and dusk in the winter), and many childcentred land uses are located adjacent to schools, such as Scouts/Guides halls, swimming pools and parks. Consequentially, I believe there needs to be some consideration towards more public campaigning about economical driving and the real purpose of the speed limit = or perhaps even a rethink of the speed limit concept, if people really are driving on top of it and it’s not just me becoming grumpier (our industrial psychology friends at the research centres may be able to assist us here). The Queensland organising committee is now in full swing organising the 2010 AITPM National Conference, What’s New?, so please keep a lookout for related content. Best regards to all, Jon Bunker PS A Cartoonists view of traffic engineers I thought you might enjoy this. http://xkcd.com/277/

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When I arrived in Queensland's capital in 1996, Brisbane was commonly referred to as an 'overgrown country town'. This might have been an acceptable description in the 1990s, but it cannot be applied any longer. Brisbane, affectionaly referred to by the locals as Bris-Vegas, has now come of age. Following Sydney and Melbourne, Brisbane is the third most populous city in Australia with a population of approximately two million. Interestingly, the 2006 Census showed that 22 per cent of Brisbane's population was born overseas, the three main countries of birth being the UK, New Zealand and South Africa. Brisbane City is centred on its most dominant environmental element, the Brisbane River, which effectively carves Brisbane into two areas - the Northside and the Southside. The 2001 addition of Cox Rayner's Goodwill Pedestrian and Cycle Bridge signified Brisbane's acceptance and affectionate embrace of its River resulting in a long overdue linage between Brisbane's North and South. It connects the City's key precincts - the Northside CBD through Queensland University of Technology (QUT), across Brisbane River, to the recreational precinct of the Southside Southbank Parklands. The Southside cultural precinct of Southbank is the home to Queensland's Art Gallery, Performing Arts Complex, State Library and Museum -each of which were designed by Brisbane Stalwart Architect Robin Gibson, in the 1970s and '80s. The CBD component of the Brisbane River is flanked by a number of Institutional Facilities, including the campuses of QUT, Griffith University and the Southbank Education and Training Precinct (SETP), which combine to form a cross-river educational precinct. The past decade has born witness to a city which has keenly supported emerging architects in addition to the more entrenched stalwarts of the profession, resulting in a youthful, relaxed and unpretentious sub-tropical city. Viva Bris-Vegas!