350 resultados para U-addition RNA editing
Resumo:
The QUT Team developed an idea for a new residential housing typology that is appropriate for sites where the best views are in the opposing direction to the preferable climatic orientation. The interlocking configuration creates a double height external living space in every apartment, creating further opportunities for cross ventilation and natural daylight. Unlike conventional double loaded housing typologies, the interlocking configuration only requires a continuous public circulation corridor every second level. The cores that service this corridor are separated to either end of the tower and open areas. The configuration of the interlocking apartments creates an interesting composition of solid and void when viewed externally. This undulating facade petternation assists in articulating the large building mass. The project was evaluated by independent consultants and found to be cost effective, and at the same time delivering energy efficient high density liveability. The project was presented to a meeting of the Australian Council on Tall Buildings seminar on 15 September 2010.
Resumo:
Based on the AFM-bending experiments, a molecular dynamics (MD) bending simulation model is established which could accurately account for the full spectrum of the mechanical properties of NWs in a double clamped beam configuration, ranging from elasticity to plasticity and failure. It is found that, loading rate exerts significant influence to the mechanical behaviours of nanowires (NWs). Specifically, a loading rate lower than 10 m/s is found reasonable for a homogonous bending deformation. Both loading rate and potential between the tip and the NW are found to play an important role in the adhesive phenomenon. The force versus displacement (F-d) curve from MD simulation is highly consistent in shapes with that from experiments. Symmetrical F-d curves during loading and unloading processes are observed, which reveal the linear-elastic and non-elastic bending deformation of NWs. The typical bending induced tensile-compressive features are observed. Meanwhile, the simulation results are excellently fitted by the classical Euler-Bernoulli beam theory with axial effect. It is concluded that, axial tensile force becomes crucial in bending deformation when the beam size is down to nanoscale for double clamped NWs. In addition, we find shorter NWs will have an earlier yielding and a larger yielding force. Mechanical properties (Young’s modulus & yield strength) obtained from both bending and tensile deformations are found comparable with each other. Specifically, the modulus is essentially similar under these two loading methods, while the yield strength during bending is observed larger than that during tension.
Resumo:
Earlier research found evidence for electro-cortical race bias towards black target faces in white American participants irrespective of the task relevance of race. The present study investigated whether an implicit race bias generalizes across cultural contexts and racial in- and out-groups. An Australian sample of 56 Chinese and Caucasian males and females completed four oddball tasks that required sex judgements for pictures of male and female Chinese and Caucasian posers. The nature of the background (across task) and of the deviant stimuli (within task) was fully counterbalanced. Event-related potentials (ERPs) to deviant stimuli recorded from three midline sites were quantified in terms of mean amplitude for four components: N1, P2, N2 and a late positive complex (LPC; 350–700 ms). Deviants that differed from the backgrounds in sex or race elicited enhanced LPC activity. These differences were not modulated by participant race or sex. The current results replicate earlier reports of effects of poser race relative to background race on the LPC component of the ERP waveform. In addition, they indicate that an implicit race bias occurs regardless of participant's or poser's race and is not confined to a particular cultural context.
Resumo:
Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds.
Resumo:
Prostate cancer (CaP) is the most commonly diagnosed cancer in males in Australia, North America, and Europe. If found early and locally confined, CaP can be treated with radical prostatectomy or radiation therapy; however, 25-40% patients will relapse and go on to advanced disease. The most common therapy in these cases is androgen deprivation therapy (ADT), which suppresses androgen production from the testis. Lack of the testicular androgen supply causes cells of the prostate to undergo apoptosis. However, in some cases the regression initially seen with ADT eventually gives way to a growth of a population of cancerous cells that no longer require testicular androgens. This phenotype is essentially fatal and is termed castrate resistant prostate cancer (CRPC). In addition to eventual regression, there are many undesirable side effects which accompany ADT, including development of a metabolic syndrome, which is defined by the U.S. National Library of Medicine as “a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes.” This project will focus on the effect of ADT induced hyperinsulinemia, as mimicked by treating androgen receptor positive CaP cells with insulin in a serum (hormone) deprived environment. While this side effect is not widely explored, in this thesis it is demonstrated for the first time that insulin upregulates pathways important to CaP progression. Our group has previously shown that during CaP progression, the enzymes necessary for de novo steroidogenesis are upregulated in the LNCaP xenograft model, total steroid levels are increased in tumours compared to pre castrate levels, and de novo steroidogenesis from radio-labelled acetate has been demonstrated. Because of the CaP dependence on AR for survival, we and other groups believe that CaP cells carry out de novo steroidogenesis to survive in androgen deprived conditions. Because (a) men on ADT often develop metabolic syndrome, and (b) men with lifestyle-induced obesity and hyperinsulinemia have worse prognosis and faster disease progression, and because (c) insulin causes steroidogenesis in other cell lines, the hypothesis that insulin may contribute to CaP progression through upregulation of steroidogenesis was explored. Insulin upregulates steroidogenesis enzymes at the mRNA level in three AR positive cell lines, as well as upregulating these enzymes at the protein level in two cell lines. It has also been demonstrated that insulin increases mitochondrial (functional) levels of steroid acute regulatory protein (StAR). Furthermore, insulin causes increased levels of total steroids in and induction of de novo steroid synthesis by insulin has been demonstrated at levels induced sufficient to activate AR. The effect of insulin analogs on CaP steroidogenesis in LNCaP and VCaP cells has also been investigated because epidemiological studies suggest that some of the analogs developed may have more cancer stimulatory effects than normal insulin. In this project, despite the signalling differences between glargine, X10, and insulin, these analogs did not appear to induce steroidogenesis any more potently that normal insulin. The effect of insulin of MCF7breast cancer cells was also investigated with results suggesting that breast cancer cells may be capable of de novo steroidogenesis, and that increase in estradiol production may be exacerbated by insulin. Insulin has also been long known to stimulate lipogenesis in the liver and adipocytes, and has been demonstrated to increase lipogenesis in breast cancer cells; therefore, investigation of the effect of insulin on lipogenesis, which is a hallmark of aggressive cancers, was investigated. In CaP progression sterol regulatory element binding protein (SREBP) is dysregulated and upregulates fatty acid synthase (FASN), acetyl CoA-carboxylase, and other lipogenesis genes. SREBP is important for steroidogenesis and in this project has been shown to be upregulated by insulin in CaP cells. Fatty acid synthesis provides building blocks of membrane growth, provides substrates for acid oxidation, the main energy source for CaP cells, provides building blocks for anti-apoptotic and proinflammatory molecules, and provides molecules that stimulate steroidogenesis. In this project it has been shown that insulin upregulates FASN and ACC, which synthesize fatty acids, as well as upregulating hormone sensitive lipase (HSL), diazepam-binding inhibitor (DBI), and long-chain acyl-CoA synthetase 3 (ACSL3), which contribute to lipid activation of steroidogenesis. Insulin also upregulates total lipid levels and de novo lipogenesis, which can be suppressed by inhibition of the insulin receptor (INSR). The fatty acids synthesized after insulin treatment are those that have been associated with CaP; furthermore, microarray data suggests insulin may upregulate fatty acid biosynthesis, metabolism and arachidonic acid metabolism pathways, which have been implicated in CaP growth and survival. Pharmacological agents used to treat patients with hyperinsulinemia/ hyperlipidemia have gained much interest in regards to CaP risk and treatment; however, the scientific rationale behind these clinical applications has not been examined. This thesis explores whether the use of metformin or simvastatin would decrease either lipogenesis or steroidogenesis or both in CaP cells. Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitor, which blocks synthesis of cholesterol, the building block of steroids/ androgens. It has also been postulated to down regulate SREBP in other metabolic disorders. It has been shown in this thesis, in LNCaP cells, that simvastatin inhibited and decreased insulin induced steroidogenesis and lipogenesis, respectively, but increased these pathways in the absence of insulin. Conversely, metformin, which activates AMP-activated protein kinase (AMPK) to shut down lipogenesis, cholesterol synthesis, and protein synthesis, highly suppresses both steroidogenesis and lipogenesis in the presence and absence of insulin. Lastly, because it has been demonstrated to increase steroidogenesis in other cell lines, and because the elucidation of any factors affecting steroidogenesis is important to understanding CaP, the effect of IGF2 on steroidogenesis in CaP cells was investigated. In patient samples, as men progress to CRPC, IGF2 mRNA and the protein levels of the receptors it may signal through are upregulated. It has also been demonstrated that IGF2 upregulates steroidogenic enzymes at both the mRNA and protein levels in LNCaP cells, increases intracellular and secreted steroid/androgen levels in LNCaPs to levels sufficient to stimulate the AR, and upregulated de novo steroidogenesis in LNCaPs and VCaPs. As well, inhibition of INSR and insulin-like growth factor 1 receptor (IGF1R), which IGF2 signals through, suggests that induction of steroidogenesis may be occurring predominantly through IGF1R. In summary, this project has illuminated for the first time that insulin is likely to play a large role in cancer progression, through upregulation of the steroidogenesis and lipogenesis pathways at the mRNA and protein levels, and production levels, and demonstrates a novel role for IGF-II in CaP progression through stimulation of steroidogenesis. It has also been demonstrated that metformin and simvastatin drugs may be useful in suppressing the insulin induction of these pathways. This project affirms the pathways by which ADT- induced metabolic syndrome may exacerbate CaP progression and strongly suggests that the monitoring and modulation of the metabolic state of CaP patients could have a strong impact on their therapeutic outcomes.
Resumo:
Purpose: Young novice drivers continue to be overrepresented in fatalities and injuries arising from crashes even with the introduction of countermeasures such as graduated driver licensing (GDL). Enhancing countermeasures requires a better understanding of the variables influencing risky driving. One of the most common risky behaviours performed by drivers of all ages is speeding, which is particularly risky for young novice drivers who, due to their driving inexperience, have difficulty in identifying and responding appropriately to road hazards. Psychosocial theory can improve our understanding of contributors to speeding, thereby informing countermeasure development and evaluation. This paper reports an application of Akers’ social learning theory (SLT), augmented by Gerrard and Gibbons’ prototype/willingness model (PWM), in addition to personal characteristics of age, gender, car ownership, and psychological traits/states of anxiety, depression, sensation seeking propensity and reward sensitivity, to examine the influences on self-reported speeding of young novice drivers with a Provisional (intermediate) licence in Queensland, Australia. Method: Young drivers (n = 378) recruited in 2010 for longitudinal research completed two surveys containing the Behaviour of Young Novice Drivers Scale, and reported their attitudes and behaviours as pre-Licence/Learner (Survey 1) and Provisional (Survey 2) drivers and their sociodemographic characteristics. Results: An Akers’ measurement model was created. Hierarchical multiple regressions revealed that (1) personal characteristics (PC) explained 20.3%; (2) the combination of PC and SLT explained 41.1%; and (3) the combination of PC, SLT and PWM explained 53.7% of variance in self-reported speeding. Whilst there appeared to be considerable shared variance, the significant predictors in the final model included gender, car ownership, reward sensitivity, depression, personal attitudes, and Learner speeding. Conclusions: These results highlight the capacity for psychosocial theory to improve our understanding of speeding by young novice drivers, revealing relationships between previous behaviour, attitudes, psychosocial characteristics and speeding. The findings suggest multi-faceted countermeasures should target the risky behaviour of Learners, and Learner supervisors should be encouraged to monitor their Learners’ driving speed. Novice drivers should be discouraged from developing risky attitudes towards speeding.
Resumo:
The LiteSteel Beam (LSB) is a new cold-formed hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. In addition to this unique geometry, the LSB sections also have unique characteristics relating to their stress-strain curves, residual stresses, initial geometric imperfections and hollow flanges that are not encountered in conventional hot-rolled and cold-formed steel channel sections. An experimental study including 20 section moment capacity tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. The presence of inelastic reserve bending capacity in these beams was investigated in detail although the current design rules generally limit the section moment capacities of cold-formed steel members to their first yield moments. The ultimate moment capacities from the tests were compared with the section moment capacities predicted by the current cold-formed and hot-rolled steel design standards. It was found that compact and non-compact LSB sections have greater moment capacities than their first yield moments. The current cold-formed steel design standards were found to be conservative in predicting the section moment capacities of compact and non-compact LSB sections while the hot-rolled steel design standards were able to better predict them. This paper has shown that suitable modifications are needed to the current design rules to allow the inclusion of available inelastic bending capacities of LSBs in design.
Resumo:
China has experienced an extraordinary level of economic development since the 1990s, following excessive competition between different regions. This has resulted in many resource and environmental problems. Land resources, for example, are either abused or wasted in many regions. The strategy of development priority zoning (DPZ), proposed by the Chinese National 11th Five-Year Plan, provides an opportunity to solve these problems by coordinating regional development and protection. In line with the rational utilization of land, it is proposed that the DPZ strategy should be integrated with regional land use policy. As there has been little research to date on this issue, this paper introduces a system dynamic (SD) model for assessing land use change in China led by the DPZ strategy. Land use is characterized by the prioritization of land development, land utilization, land harness and land protection (D-U-H-P). By using the Delphi method, a corresponding suitable prioritization of D-U-H-P for the four types of DPZ, including optimized development zones (ODZ), key development zones (KDZ), restricted development zones (RDZ), and forbidden development zones (FDZ) are identified. Suichang County is used as a case study in which to conduct the simulation of land use change under the RDZ strategy. The findings enable a conceptualization to be made of DPZ-led land use change and the identification of further implications for land use planning generally. The SD model also provides a potential tool for local government to combine DPZ strategy at the national level with land use planning at the local level.
Resumo:
The aim of this study was to prepare and characterise composites of Soluble potato starch or hydroxypropylated maize starch with milled sugar cane fibre (i.e., bagasse). Prior to the preparation of the starch-fibre composites, the ‘cast’ and the ‘hot-pressed’ methods were investigated for the preparation of starch films in order to select the preferred preparation method. The physicochemical and mechanical properties of films conditioned at different relative humidities (RHs) were determined through moisture uptake, crystallinity, glass transition temperature (Tg), thermal properties, molecular structure and tensile tests. Hot-pressed starch films have ~5.5% less moisture, twice the crystallinity (~59%), higher Tg and Young’s modulus than cast starch films. The VH-type starch polymorph was observed to be present in the hot-pressed films. The addition of bagasse fibre to both starch types, prepared by hot-pressing, reduced the moisture uptake by up to 30% (cf., cast film) at 58% RH. The addition of 5 wt% fibre increased the tensile strength and Young’s modulus by 16% and 24% respectively. It significantly decreased the tensile strain by ~53%. Fourier Transform infrared (FT-IR) spectroscopy revealed differences in hydrogen bonding capacity between the films with fibre and those without fibre. The results have been explained on the basis of the intrinsic properties of starch and bagasse fibres.
Resumo:
The marsupial order Diprotodontia includes 10 extant families, which occupy all terrestrial habitats across Australia and New Guinea and have evolved remarkable dietary and locomotory diversity. Despite considerable attention, the interrelations of these families have for the most part remained elusive. In this study, we separately model mitochondrial RNA and protein-coding sequences in addition to nuclear protein-coding sequences to provide near-complete resolution of diprotodontian family-level phylogeny. We show that alternative topologies inferred in some previous studies are likely to be artifactual, resulting from branch-length and compositional biases. Subordinal groupings resolved herein include Vombatiformes (wombats and koala) and Phalangerida, which in turn comprises Petauroidea (petaurid gliders and striped, feathertail, ringtail and honey possums) and a clade whose plesiomorphic members possess blade-like premolars (phalangerid possums, kangaroos and their allies and most likely, pygmy possums). The topology resolved reveals ecological niche structuring among diprotodontians that has likely been maintained for more than 40 million years.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causes and contributing factors—rest upon the pursuit of numerous lines of research inquiry. The research community has focused considerable attention on analytical methods development (negative binomial models, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might logically seek to know which lines of inquiry might provide the most significant improvements in understanding crash causation and/or prediction. It is the contention of this paper that the exclusion of important variables (causal or surrogate measures of causal variables) cause omitted variable bias in model estimation and is an important and neglected line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant opportunities to better understand contributing factors and/or causes of crashes. This study examines the role of important variables (other than Average Annual Daily Traffic (AADT)) that are generally omitted from intersection crash prediction models. In addition to the geometric and traffic regulatory information of intersection, the proposed model includes many spatial factors such as local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools—representing a mix of potential environmental and human factors that are theoretically important, but rarely used. Results suggest that these variables in addition to AADT have significant explanatory power, and their exclusion leads to omitted variable bias. Provided is evidence that variable exclusion overstates the effect of minor road AADT by as much as 40% and major road AADT by 14%.
Resumo:
The human Ureaplasma species are the most frequently isolated bacteria from the upper genital tract of pregnant women and can cause clinically asymptomatic, intra-uterine infections, which are difficult to treat with antimicrobials. Ureaplasma infection of the upper genital tract during pregnancy has been associated with numerous adverse outcomes including preterm birth, chorioamnionitis and neonatal respiratory diseases. The mechanisms by which ureaplasmas are able to chronically colonise the amniotic fluid and avoid eradication by (i) the host immune response and (ii) maternally-administered antimicrobials, remain virtually unexplored. To address this gap within the literature, this study investigated potential mechanisms by which ureaplasmas are able to cause chronic, intra-amniotic infections in an established ovine model. In this PhD program of research the effectiveness of standard, maternal erythromycin for the treatment of chronic, intra-amniotic ureaplasma infections was evaluated. At 55 days of gestation pregnant ewes received an intra-amniotic injection of either: a clinical Ureaplasma parvum serovar 3 isolate that was sensitive to macrolide antibiotics (n = 16); or 10B medium (n = 16). At 100 days of gestation, ewes were then randomised to receive either maternal erythromycin treatment (30 mg/kg/day for four days) or no treatment. Ureaplasmas were isolated from amniotic fluid, chorioamnion, umbilical cord and fetal lung specimens, which were collected at the time of preterm delivery of the fetus (125 days of gestation). Surprisingly, the numbers of ureaplasmas colonising the amniotic fluid and fetal tissues were not different between experimentally-infected animals that received erythromycin treatment or infected animals that did not receive treatment (p > 0.05), nor were there any differences in fetal inflammation and histological chorioamnionitis between these groups (p > 0.05). These data demonstrate the inability of maternal erythromycin to eradicate intra-uterine ureaplasma infections. Erythromycin was detected in the amniotic fluid of animals that received antimicrobial treatment (but not in those that did not receive treatment) by liquid chromatography-mass spectrometry; however, the concentrations were below therapeutic levels (<10 – 76 ng/mL). These findings indicate that the ineffectiveness of standard, maternal erythromycin treatment of intra-amniotic ureaplasma infections may be due to the poor placental transfer of this drug. Subsequently, the phenotypic and genotypic characteristics of ureaplasmas isolated from the amniotic fluid and chorioamnion of pregnant sheep after chronic, intra-amniotic infection and low-level exposure to erythromycin were investigated. At 55 days of gestation twelve pregnant ewes received an intra-amniotic injection of a clinical U. parvum serovar 3 isolate, which was sensitive to macrolide antibiotics. At 100 days of gestation, ewes received standard maternal erythromycin treatment (30 mg/kg/day for four days, n = 6) or saline (n = 6). Preterm fetuses were surgically delivered at 125 days of gestation and ureaplasmas were cultured from the amniotic fluid and the chorioamnion. The minimum inhibitory concentrations (MICs) of erythromycin, azithromycin and roxithromycin were determined for cultured ureaplasma isolates, and antimicrobial susceptibilities were different between ureaplasmas isolated from the amniotic fluid (MIC range = 0.08 – 1.0 mg/L) and chorioamnion (MIC range = 0.06 – 5.33 mg/L). However, the increased resistance to macrolide antibiotics observed in chorioamnion ureaplasma isolates occurred independently of exposure to erythromycin in vivo. Remarkably, domain V of the 23S ribosomal RNA gene (which is the target site of macrolide antimicrobials) of chorioamnion ureaplasmas demonstrated significant variability (125 polymorphisms out of 422 sequenced nucleotides, 29.6%) when compared to the amniotic fluid ureaplasma isolates and the inoculum strain. This sequence variability did not occur as a consequence of exposure to erythromycin, as the nucleotide substitutions were identical between chorioamnion ureaplasmas isolated from different animals, including those that did not receive erythromycin treatment. We propose that these mosaic-like 23S ribosomal RNA gene sequences may represent gene fragments transferred via horizontal gene transfer. The significant differences observed in (i) susceptibility to macrolide antimicrobials and (ii) 23S ribosomal RNA sequences of ureaplasmas isolated from the amniotic fluid and chorioamnion suggests that the anatomical site from which they were isolated may exert selective pressures that alter the socio-microbiological structure of the bacterial population, by selecting for genetic changes and altered antimicrobial susceptibility profiles. The final experiment for this PhD examined antigenic size variation of the multiple banded antigen (MBA, a surface-exposed lipoprotein and predicted ureaplasmal virulence factor) in chronic, intra-amniotic ureaplasma infections. Previously defined ‘virulent-derived’ and ‘avirulent-derived’ clonal U. parvum serovar 6 isolates (each expressing a single MBA protein) were injected into the amniotic fluid of pregnant ewes (n = 20) at 55 days of gestation, and amniotic fluid was collected by amniocentesis every two weeks until the time of near-term delivery of the fetus (at 140 days of gestation). Both the avirulent and virulent clonal ureaplasma strains generated MBA size variants (ranging in size from 32 – 170 kDa) within the amniotic fluid of pregnant ewes. The mean number of MBA size variants produced within the amniotic fluid was not different between the virulent (mean = 4.2 MBA variants) and avirulent (mean = 4.6 MBA variants) ureaplasma strains (p = 0.87). Intra-amniotic infection with the virulent strain was significantly associated with the presence of meconium-stained amniotic fluid (p = 0.01), which is an indicator of fetal distress in utero. However, the severity of histological chorioamnionitis was not different between the avirulent and virulent groups. We demonstrated that ureaplasmas were able to persist within the amniotic fluid of pregnant sheep for 85 days, despite the host mounting an innate and adaptive immune response. Pro-inflammatory cytokines (interleukin (IL)-1â, IL-6 and IL-8) were elevated within the chorioamnion tissue of pregnant sheep from both the avirulent and virulent treatment groups, and this was significantly associated with the production of anti-ureaplasma IgG antibodies within maternal sera (p < 0.05). These findings suggested that the inability of the host immune response to eradicate ureaplasmas from the amniotic cavity may be due to continual size variation of MBA surface-exposed epitopes. Taken together, these data confirm that ureaplasmas are able to cause long-term in utero infections in a sheep model, despite standard antimicrobial treatment and the development of a host immune response. The overall findings of this PhD project suggest that ureaplasmas are able to cause chronic, intra-amniotic infections due to (i) the limited placental transfer of erythromycin, which prevents the accumulation of therapeutic concentrations within the amniotic fluid; (ii) the ability of ureaplasmas to undergo rapid selection and genetic variation in vivo, resulting in ureaplasma isolates with variable MICs to macrolide antimicrobials colonising the amniotic fluid and chorioamnion; and (iii) antigenic size variation of the MBA, which may prevent eradication of ureaplasmas by the host immune response and account for differences in neonatal outcomes. The outcomes of this program of study have improved our understanding of the biology and pathogenesis of this highly adapted microorganism.
Resumo:
Charge of the light brigade: A molecule is able to walk back and forth upon a five-foothold pentaethylenimine track without external intervention. The 1D random walk is highly processive (mean step number 530) and exchange takes place between adjacent amine groups in a stepwise fashion. The walker performs a simple task whilst walking: quenching of the fluorescence of an anthracene group sited at one end of the track. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Purpose - The purpose of this paper is to examine the possibility of an inverted U-shaped relationship between job demands and work engagement, and whether social support moderates this relationship. Design/methodology/approach – This study uses 307 technical and information technology (IT) managers who responded to an online survey. Multiple regressions are employed to examine linear and curvilinear relationship among variables. Findings – Overall, results support the applicability of the quadratic effect of job demands on employee engagement. However, only supervisor support, not colleague support, moderated the relationship between job demands and work engagement. Originality/value – The paper is the first to shed light on the quadratic effect of job demands on work engagement. The findings have noteworthy implications for managers to design optimal job demands that increase employee engagement.
Resumo:
Endocrinopathic laminitis is frequently associated with hyperinsulinaemia but the role of glucose in the pathogenesis of the disease has not been fully investigated. This study aimed to determine the endogenous insulin response to a quantity of glucose equivalent to that administered during a laminitis-inducing, euglycaemic, hyperinsulinaemic clamp, over 48. h in insulin-sensitive Standardbred racehorses. In addition, the study investigated whether glucose infusion, in the absence of exogenous insulin administration, would result in the development of clinical and histopathological evidence of laminitis. Glucose (50% dextrose) was infused intravenously at a rate of 0.68 mL/kg/h for 48. h in treated horses (n = 4) and control horses (n = 3) received a balanced electrolyte solution (0.68 mL/kg/h). Lamellar histology was examined at the conclusion of the experiment. Horses in the treatment group were insulin sensitive (M value 0.039 ± 0.0012. mmol/kg/min and M-to-I ratio (100×) 0.014 ± 0.002) as determined by an approximated hyperglycaemic clamp. Treated horses developed glycosuria, hyperglycaemia (10.7 ± 0.78. mmol/L) and hyperinsulinaemia (208 ± 26.1. μIU/mL), whereas control horses did not. None of the horses became lame as a consequence of the experiment but all of the treated horses developed histopathological evidence of laminitis in at least one foot. Combined with earlier studies, the results showed that laminitis may be induced by either insulin alone or a combination of insulin and glucose, but that it is unlikely to be due to a glucose overload mechanism. Based on the histopathological data, the potential threshold for insulin toxicity (i.e. laminitis) in horses may be at or below a serum concentration of ∼200. μIU/mL.