150 resultados para The Pawn New Statute
Resumo:
Eight new N-arylstilbazolium chromophores with electron donating –NR2 (R = Me or Ph) substituents have been synthesized via Knoevenagel condensations and isolated as their PF6− salts. These compounds have been characterized by using various techniques including 1H NMR and IR spectroscopies and electrospray mass spectrometry. UV–vis absorption spectra recorded in acetonitrile are dominated by intense, low energy π → π* intramolecular charge-transfer (ICT) bands, and replacing Me with Ph increases the ICT energies. Cyclic voltammetric studies show irreversible reduction processes, together with oxidation waves that are irreversible for R = Me, but reversible for R = Ph. Single crystal X-ray structures have been determined for three of the methyl ester-substituted stilbazolium salts and for the Cl− salts of their picolinium precursors. Time-dependent density functional theory calculations afford reasonable predictions of ICT energies, but greater rigour is necessary for –NPh2 derivatives. The four new acid-functionalized dyes give moderate sensitization efficiencies (ca. 0.2%) when using TiO2-based photoanodes, with relatively higher values for R = Ph vs Me, while larger efficiencies (up to 0.8%) are achieved with ZnO substrates.
Resumo:
Originally launched in 2005 with a focus on user-generated content, YouTube has become the dominant platform for online video worldwide, and an important location for some of the most significant trends and controversies in the contemporary new-media environment. Throughout its very short history, it has also intersected with and been the focus of scholarly debates related to the politics, economics, and cultures of the new media—in particular, the “participatory turn” associated with “Web 2.0” business models’ partial reliance on amateur content and social networking. Given the slow pace of traditional scholarly publishing, the body of media and cultural studies literature substantively dedicated to describing and critically understanding YouTube’s texts, practices, and politics is still small, but it is growing steadily. At the same time, since its inception scholars from a wide range of disciplines and critical perspectives have found YouTube useful as a source of examples and case studies, some of which are included here; others have experimented directly with the scholarly and educational potential of the platform itself. For these reasons, although primarily based around the traditional publishing outlets for media, Internet, and cultural studies, this bibliography draws eclectically on a wide range of sources—including sources very closely associated with the web business literature and with the YouTube community itself.
Resumo:
OBJECTIVES: To identify the prevalence of geriatric syndromes in the premorbid for all syndromes except falls (preadmission), admission, and discharge assessment periods and the incidence of new and significant worsening of existing syndromes at admission and discharge. DESIGN: Prospective cohort study. SETTING: Three acute care hospitals in Brisbane, Australia. PARTICIPANTS: Five hundred seventy-seven general medical patients aged 70 and older admitted to the hospital. MEASUREMENTS: Prevalence of syndromes in the premorbid (or preadmission for falls), admission, and discharge periods; incidence of new syndromes at admission and discharge; and significant worsening of existing syndromes at admission and discharge. RESULTS: The most frequently reported premorbid syndromes were bladder incontinence (44%), impairment in any activity of daily living (ADL) (42%). A high proportion (42%) experienced at least one fall in the 90 days before admission. Two-thirds of the participants experienced between one and five syndromes (cognitive impairment, dependence in any ADL item, bladder and bowel incontinence, pressure ulcer) before, at admission, and at discharge. A majority experienced one or two syndromes during the premorbid (49.4%), admission (57.0%), or discharge (49.0%) assessment period.The syndromes with a higher incidence of significant worsening at discharge (out of the proportion with the syndrome present premorbidly) were ADL limitation (33%), cognitive impairment (9%), and bladder incontinence (8%). Of the syndromes examined at discharge, a higher proportion of patients experienced the following new syndromes at discharge (absent premorbidly): ADL limitation (22%); and bladder incontinence (13%). CONCLUSION: Geriatric syndromes were highly prevalent. Many patients did not return to their premorbid function and acquired new syndromes.
Resumo:
Many firms develop successful businesses around competencies and over time these competencies can become core rigidities and barriers to new ways of working. This paper investigates how firms respond to a design innovation program apply design methodologies to their business. Early findings from a study of companies engaged in a design innovation program indicate that applying design principles to multiple aspects of their business provides a new strategic focus, tools for a better understanding of their business and the marketplace, new economic activity, awareness of the need for an innovative culture and strategic renewal.
Resumo:
This paper draws on the work of the ‘EU Kids Online’ network funded by the EC (DG Information Society) Safer Internet plus Programme (project code SIP-KEP-321803); see www.eukidsonline.net, and addresses Australian children’s online activities in terms of risk, harm and opportunity. In particular, it draws upon data that indicates that Australian children are more likely to encounter online risks — especially around seeing sexual images, bullying, misuse of personal data and exposure to potentially harmful user-generated content — than is the case with their EU counterparts. Rather than only comparing Australian children with their European equivalents, this paper places the risks experienced by Australian children in the context of the mediation and online protection practices adopted by their parents, and asks about the possible ways in which we might understand data that seems to indicate that Australian children’s experiences of online risk and harm differ significantly from the experiences of their Europe-based peers. In particular, and as an example, this paper sets out to investigate the apparent conundrum through which Australian children appear twice as likely as most European children to have seen sexual images in the past 12 months, but parents are more likely to filter their access to the internet than is the case with most children in the wider EU Kids Online study. Even so, one in four Australian children (25%) believes that what their parents do helps ‘a lot’ to improve their internet experience, and Australian children and their parents are a little less likely to agree about the mediation practices taking place in the family home than is the case in the EU. The AU Kids Online study was carried out as a result of the ARC Centre of Excellence for Creative Industries and Innovation’s funding of a small scale randomised sample (N = 400) of Australian families with at least one child, aged 9–16, who goes online. The report on Risks and safety for Australian children on the internet follows the same format and uses much of the contextual statement around these issues as the ‘county level’ reports produced by the 25 EU nations involved in EU Kids Online, first drafted by Livingstone et al. (2010). The entirely new material is the data itself, along with the analysis of that data.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
A wireless sensor network collected real-time water-quality measurements to investigate how current irrigation practices—in particular, underground water salination—affect the environment. New protocols provided high end-to-end packet delivery rates in the hostile deployment environment.
Resumo:
We report three developments toward resolving the challenge of the apparent basal polytomy of neoavian birds. First, we describe improved conditional down-weighting techniques to reduce noise relative to signal for deeper divergences and find increased agreement between data sets. Second, we present formulae for calculating the probabilities of finding predefined groupings in the optimal tree. Finally, we report a significant increase in data: nine new mitochondrial (mt) genomes (the dollarbird, New Zealand kingfisher, great potoo, Australian owlet-nightjar, white-tailed trogon, barn owl, a roadrunner [a ground cuckoo], New Zealand long-tailed cuckoo, and the peach-faced lovebird) and together they provide data for each of the six main groups of Neoaves proposed by Cracraft J (2001). We use his six main groups of modern birds as priors for evaluation of results. These include passerines, cuckoos, parrots, and three other groups termed “WoodKing” (woodpeckers/rollers/kingfishers), “SCA” (owls/potoos/owlet-nightjars/hummingbirds/swifts), and “Conglomerati.” In general, the support is highly significant with just two exceptions, the owls move from the “SCA” group to the raptors, particularly accipitrids (buzzards/eagles) and the osprey, and the shorebirds may be an independent group from the rest of the “Conglomerati”. Molecular dating mt genomes support a major diversification of at least 12 neoavian lineages in the Late Cretaceous. Our results form a basis for further testing with both nuclear-coding sequences and rare genomic changes.
Resumo:
According to a recent report Australian higher education is not in crisis. However, we could be doing it better. The report Mapping Australian Higher Education (Norton, 2012) highlights comparative weaknesses such as levels f student engagement; interactions between students and academic staff; and academic staff preferences for research over teaching. The report points out that despite these concerns most graduates continue to get good, well-paid jobs, student satisfaction is improving, and levels of public confidence in Australian higher education are high. It also stresses that ‘the promise of higher education is that it provides adaptable cognitive skills, not that it always provides the job specific skills graduates will need in their future employment’ (Norton, 2012, p.58). This is worth keeping in mind as we contribute to the significant growth in curriculum initiatives aimed at preparing graduates for the world of work. Work Integrated Learning (WIL) is not a new concept but there is increased pressure on higher education globally to address graduate employability skills. The sector is under pressure in an increasingly competitive environment to demonstrate the relevance of courses, accountability and effective use of public funds (Peach & Gamble, 2011). In the Australian context this also means responding to the skills shortage in areas such as engineering, health, construction and business (DEEWR, 2010). This paper provides a brief overview of collaborative efforts over several years to improve the activity of WIL at the Queensland University of Technology (QUT). These efforts have resulted in changes to curriculum, pedagogy, systems and processes, and the initiation of local, regional, national, and international networks. The willingness of students, staff, and industry partners to ‘get stuck in’ and try new approaches in these different contexts can be understood as a form of boundary spanning. That is, the development of the capability to mediate between different forms of expertise and the demands of different contexts in order to nurture student learning and improve the outcomes of higher education through WIL (Peach, Cates, Ilg, Jones, Lechleiter, 2011).
Resumo:
Decision table and decision rules play an important role in rough set based data analysis, which compress databases into granules and describe the associations between granules. Granule mining was also proposed to interpret decision rules in terms of association rules and multi-tier structure. In this paper, we further extend granule mining to describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other ganules, it provides a kind of novel knowledge in databases. Some experiments are conducted to test the proposed new concepts for describing the characteristics of a real network traffic data collection. The results show that the proposed concepts are promising.
Numerical and experimental studies of cold-formed steel floor systems under standard fire conditions
Resumo:
Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.
Resumo:
The Lockyer Valley in southeast Queensland, Australia, hosts an economically significant alluvial aquifer system which has been impacted by prolonged drought conditions (~1997 to ~ 2009). Throughout this time, the system was under continued groundwater extraction, resulting in severe aquifer depletion. By 2008, much of the aquifer was at <30% of storage but some relief occurred with rains in early 2009. However, between December 2010 and January 2011, most of southeast Queensland experienced unprecedented flooding, which generated significant aquifer recharge. In order to understand the spatial and temporal controls of groundwater recharge in the alluvium, a detailed 3D lithological property model of gravels, sands and clays was developed using GOCAD software. The spatial distribution of recharge throughout the catchment was assessed using hydrograph data from about 400 groundwater observation wells screened at the base of the alluvium. Water levels from these bores were integrated into a catchment-wide 3D geological model using the 3D geological modelling software GOCAD; the model highlights the complexity of recharge mechanisms. To support this analysis, groundwater tracers (e.g. major and minor ions, stable isotopes, 3H and 14C) were used as independent verification. The use of these complementary methods has allowed the identification of zones where alluvial recharge primarily occurs from stream water during episodic flood events. However, the study also demonstrates that in some sections of the alluvium, rainfall recharge and discharge from the underlying basement into the alluvium are the primary recharge mechanisms of the alluvium. This is indicated by the absence of any response to the flood, as well as the observed old radiocarbon ages and distinct basement water chemistry signatures at these locations. Within the 3D geological model, integration of water chemistry and time-series displays of water level surfaces before and after the flood suggests that the spatial variations of the flood response in the alluvium are primarily controlled by the valley morphology and lithological variations within the alluvium. The integration of time-series of groundwater level surfaces in the 3D geological model also enables the quantification of the volumetric change of groundwater stored in the unconfined sections of this alluvial aquifer during drought and following flood events. The 3D representation and analysis of hydraulic and recharge information has considerable advantages over the traditional 2D approach. For example, while many studies focus on singular aspects of catchment dynamics and groundwater-surface water interactions, the 3D approach is capable of integrating multiple types of information (topography, geological, hydraulic, water chemistry and spatial) into a single representation which provides valuable insights into the major factors controlling aquifer processes.
Resumo:
Three dimensional models and groundwater quality are combined to better understand and conceptualise groundwater systems in complex geological settings in the Wairau Plain, Marlborough. Hydrochemical facies, which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters, are identified within geological formations to assess natural water-rock interactions, redox potential and human agricultural impact on groundwater quality in the Wairau Plain.
Resumo:
While the majority of creative, performing, and literary artists are self-employed, relatively few tertiary arts schools attempt to develop capabilities for venture creation and management (and entrepreneurship more broadly) and still fewer do so effectively. This article asks why this is the case. It addresses underlying conceptual and philosophical issues encountered by arts educators, arguing that in all three senses of the term: new venture creation; career self-management; and being enterprising, entrepreneurship is essential to career success in the arts. However, the practice of entrepreneurship in the arts is significantly different from the practice of entrepreneurship in business, in terms of the artist’s drivers and aims, as well as the nature of entrepreneurial opportunities, contexts and processes. These differences mean that entrepreneurship curricula cannot simply be imported from Business schools. This article also examines the arts-idiosyncratic challenge of negotiating distinctive and potentially conflicting entrepreneurial aims, using career identity theory. It concludes by suggesting strategies by which adaptive entrepreneurial artist identities can be developed through higher education programs.
Resumo:
The automotive industry has been the focus of digital human modeling (DHM) research and application for many years. In the highly competitive marketplace for personal transportation, the desire to improve the customer’s experience has driven extensive research in both the physical and cognitive interaction between the vehicle and its occupants. Human models provide vehicle designers with tools to view and analyze product interactions before the first prototypes are built, potentially improving the design while reducing cost and development time. The focus of DHM research and applications began with prediction and representation of static postures for purposes of driver workstation layout, including assessments of seat adjustment ranges and exterior vision. Now DHMs are used for seat design and assessment of driver reach and ingress/egress. DHMs and related simulation tools are expanding into the cognitive domain, with computational models of perception and motion, and into the dynamic domain with models of physical responses to ride and vibration. Moreover, DHMs are now widely used to analyze the ergonomics of vehicle assembly tasks. In this case, the analysis aims to determine whether workers can be expected to complete the tasks safely and with good quality. This preface provides a review of the literature to provide context for the nine new papers presented in this special issue.