95 resultados para Text summarization
Resumo:
Objective Death certificates provide an invaluable source for cancer mortality statistics; however, this value can only be realised if accurate, quantitative data can be extracted from certificates – an aim hampered by both the volume and variable nature of certificates written in natural language. This paper proposes an automatic classification system for identifying cancer related causes of death from death certificates. Methods Detailed features, including terms, n-grams and SNOMED CT concepts were extracted from a collection of 447,336 death certificates. These features were used to train Support Vector Machine classifiers (one classifier for each cancer type). The classifiers were deployed in a cascaded architecture: the first level identified the presence of cancer (i.e., binary cancer/nocancer) and the second level identified the type of cancer (according to the ICD-10 classification system). A held-out test set was used to evaluate the effectiveness of the classifiers according to precision, recall and F-measure. In addition, detailed feature analysis was performed to reveal the characteristics of a successful cancer classification model. Results The system was highly effective at identifying cancer as the underlying cause of death (F-measure 0.94). The system was also effective at determining the type of cancer for common cancers (F-measure 0.7). Rare cancers, for which there was little training data, were difficult to classify accurately (F-measure 0.12). Factors influencing performance were the amount of training data and certain ambiguous cancers (e.g., those in the stomach region). The feature analysis revealed a combination of features were important for cancer type classification, with SNOMED CT concept and oncology specific morphology features proving the most valuable. Conclusion The system proposed in this study provides automatic identification and characterisation of cancers from large collections of free-text death certificates. This allows organisations such as Cancer Registries to monitor and report on cancer mortality in a timely and accurate manner. In addition, the methods and findings are generally applicable beyond cancer classification and to other sources of medical text besides death certificates.
Resumo:
Objective Melanoma is on the rise, especially in Caucasian populations exposed to high ultraviolet radiation such as in Australia. This paper examined the psychological components facilitating change in skin cancer prevention or early detection behaviours following a text message intervention. Methods The Queensland-based participants were 18 to 42 years old, from the Healthy Text study (N = 546). Overall, 512 (94%) participants completed the 12-month follow-up questionnaires. Following the social cognitive model, potential mediators of skin self-examination (SSE) and sun protection behaviour change were examined using stepwise logistic regression models. Results At 12-month follow-up, odds of performing an SSE in the past 12 months were mediated by baseline confidence in finding time to check skin (an outcome expectation), with a change in odds ratio of 11.9% in the SSE group versus the control group when including the mediator. Odds of greater than average sun protective habits index at 12-month follow-up were mediated by (a) an attempt to get a suntan at baseline (an outcome expectation) and (b) baseline sun protective habits index, with a change in odds ratio of 10.0% and 11.8%, respectively in the SSE group versus the control group. Conclusions Few of the suspected mediation pathways were confirmed with the exception of outcome expectations and past behaviours. Future intervention programmes could use alternative theoretical models to elucidate how improvements in health behaviours can optimally be facilitated.
Resumo:
This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.
Resumo:
Multi-document summarization addressing the problem of information overload has been widely utilized in the various real-world applications. Most of existing approaches adopt term-based representation for documents which limit the performance of multi-document summarization systems. In this paper, we proposed a novel pattern-based topic model (PBTMSum) for the task of the multi-document summarization. PBTMSum combining pattern mining techniques with LDA topic modelling could generate discriminative and semantic rich representations for topics and documents so that the most representative and non-redundant sentences can be selected to form a succinct and informative summary. Extensive experiments are conducted on the data of document understanding conference (DUC) 2007. The results prove the effectiveness and efficiency of our proposed approach.
Resumo:
This paper presents an overview of the 6th ALTA shared task that ran in 2015. The task was to identify in English texts all the potential cognates from the perspective of the French language. In other words, identify all the words in the English text that would acceptably translate into a similar word in French. We present the motivations for the task, the description of the data and the results of the 4 participating teams. We discuss the results against a baseline and prior work.