158 resultados para THIN FOIL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-C-N-O composite thin films have been synthesized by radio frequency reactive diode sputtering of an aluminum target in plasmas of N2+O2+CH4 gas mixtures. The chemical structure and composition of the films have been investigated by means of infrared and X-ray photoelectron spectroscopy. The results reveal the formation of C-N, Al-C, Al-N and Al-O bonds. The X-ray diffraction pattern suggests that the films are of nanometer composite material and contain predominately crystalline grains of hexagonal AlN and α-Al2O3. A good thermal stability of the composite has been confirmed by the annealing treatment at temperatures up to 600 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of theoretical investigations of two-channel waveguide modulator based on Surface Wave (SW) propagation are presented. The structure studied consists of two n-type semiconductor waveguide channels separated from each other by a dielectric gap and coated by a metal. The SW propagates at the semiconductor-metal interface across an external magnetic field which is parallel to the interface. An external dc voltage is applied to the metal surface of one channel to provide a small phase shift between two propagating modes. In a coupled mode approximation, two possible regimes of operation of the structure, namely as a directional coupler and as an electro-optical modulator, are considered. Our results suggest new applications in millimeter and submillimeter wave solid-state electronics and integrated optics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plasmon oscillations on the DC tunnel current in a gold nanoisland thin film (GNITF) is investigated using low intensity P~1W/cm2 continuous wave lasers. While DC voltages (1–150 V) were applied to the GNITF, it was irradiated with lasers at different wavelengths (k¼473, 532, and 633 nm). Because of plasmon oscillations, the tunnel current increased. It is found that the tunnel current enhancement is mainly due to the thermal effect of plasmon oscillations rather than other plasmonic effects. The results are highly relevant to applications of plasmonic effects in opto-electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin plate spline finite element methods are used to fit a surface to an irregularly scattered dataset [S. Roberts, M. Hegland, and I. Altas. Approximation of a Thin Plate Spline Smoother using Continuous Piecewise Polynomial Functions. SIAM, 1:208--234, 2003]. The computational bottleneck for this algorithm is the solution of large, ill-conditioned systems of linear equations at each step of a generalised cross validation algorithm. Preconditioning techniques are investigated to accelerate the convergence of the solution of these systems using Krylov subspace methods. The preconditioners under consideration are block diagonal, block triangular and constraint preconditioners [M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numer., 14:1--137, 2005]. The effectiveness of each of these preconditioners is examined on a sample dataset taken from a known surface. From our numerical investigation, constraint preconditioners appear to provide improved convergence for this surface fitting problem compared to block preconditioners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm 2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm 2/V-s in both electrons and holes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, the performance characteristics of top-gate and dual-gate thin-film transistors (TFTs) with active semiconductor layers consisting of diketopyrrolopyrrole-naphthalene copolymer are described. Optimized top-gate TFTs possess mobilities of up to 1 cm 2 /V s with low contact resistance and reduced hysteresis in air. Dual-gate devices possess higher drive currents as well as improved subthreshold and above threshold characteristics compared to single-gate devices. We also describe the reasons that dual-gate devices result in improved performance. The good stability of this polymer combined with their promising electrical properties make this material a very promising semiconductor for printable electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report charge-carrier velocity distributions in high-mobility polymer thin-film transistors (PTFTs) employing a dual-gate configuration. Our time-domain measurements of dual-gate PTFTs indicate higher effective mobility as well as fewer low-velocity carriers than in single-gate operation. Such nonquasi-static (NQS) measurements support and clarify the previously reported results of improved device performance in dual-gate devices by various groups. We believe that this letter demonstrates the utility of NQS measurements in studying charge-carrier transport in dual-gate thin-film transistors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on the device physics and charge transport characteristics of high-mobility dual-gated polymer thin-film transistors with active semiconductor layers consisting of thiophene flanked DPP with thienylene-vinylene-thienylene (PDPP-TVT) alternating copolymers. Room temperature mobilities in these devices are high and can exceed 2 cm2 V-1 s-1. Steady-state and non-quasi-static measurements have been performed to extract key transport parameters and velocity distributions of charge carriers in this copolymer. Charge transport in this polymer semiconductor can be explained using a Multiple-Trap-and-Release or Monroe-type model. We also compare the activation energy vs. field-effect mobility in a few important polymer semiconductors to gain a better understanding of transport of DPP systems and make appropriate comparisons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP)-based organic semiconductors EH-DPP-TFP and EH-DPP-TFPV with branched ethyl-hexyl solubilizing alkyl chains and end capped with trifluoromethyl phenyl groups were designed and synthesized via Suzuki coupling. These compounds show intense absorptions up to 700 nm, and thin film-forming characteristics that sensitively depend on the solvent and coating conditions. Both materials have been used as electron donors in bulk heterojunction and bilayer organic photovoltaic (OPV) devices with fullerenes as acceptors and their performance has been studied in detail. The best power conversion efficiency of 3.3% under AM1.5G illumination (100 mW cm -2) was achieved for bilayer solar cells when EH-DPP-TFPV was used with C 60, after a thermal annealing step to induce dye aggregation and interdiffusion of C 60 with the donor material. To date, this is one of the highest efficiencies reported for simple bilayer OPV devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A copolymer comprising 1,4-diketopyrrolo[3,4-c]pyrrole (DPP) and thieno[3,2-b]thiophene moieties, PDBT-co-TT, shows high hole mobility of up to 0.94 cm2 V-1 s-1 in organic thin-film transistors. The strong intermolecular interactions originated from π-π stacking and donor-acceptor interaction lead to the formation of interconnected polymer networks having an ordered lamellar structure, which have established highly efficient pathways for charge carrier transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor-acceptor (D-A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Through association of the DPP unit with appropriate electron donating building blocks, the resulting D-A molecules interact strongly in the solid state through intermolecular D-A and π-π interactions, leading to highly ordered structures at the molecular and microscopic levels. The closely packed molecules and crystalline domains are beneficial for intermolecular and interdomain (or intergranular) charge transport. Furthermore, the energy levels can be readily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly efficient charge transport properties in OTFTs. In the past few years, a number of DPP-based small molecular and polymeric semiconductors have been reported to show mobility close to or greater than 1 cm2 V -1 s-1. DPP-based polymer semiconductors have achieved record high mobility values for p-type (hole mobility: 10.5 cm2 V-1 s-1), n-type (electron mobility: 3 cm2 V-1 s-1), and ambipolar (hole/electron mobilities: 1.18/1.86 cm2 V-1 s-1) OTFTs among the known polymer semiconductors. Many DPP-based organic semiconductors have favourable energy levels and band gaps along with high hole mobility, which enable them as promising donor materials for OPVs. Power conversion efficiencies (PCE) of up to 6.05% were achieved for OPVs using DPP-based polymers, demonstrating their potential usefulness for the organic solar cell technology. This article provides an overview of the recent exciting progress made in DPP-containing polymers and small molecules that have shown high charge carrier mobility, around 0.1 cm2 V-1 s-1 or greater. It focuses on the structural design, optoelectronic properties, molecular organization, morphology, as well as performances in OTFTs and OPVs of these high mobility DPP-based materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new diketopyrrolopyrrole (DPP)-containing donor-acceptor polymer, poly(2,5-bis(2-octyldodecyl)-3,6-di(furan-2-yl)-2,5-dihydro-pyrrolo[3,4-c] pyrrole-1,4-dione-co-thieno[3,2-b]thiophene) (PDBF-co-TT), is synthesized and studied as a semiconductor in organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). High hole mobility of up to 0.53 cm 2 V -1 s -1 in bottom-gate, top-contact OTFT devices is achieved owing to the ordered polymer chain packing and favoured chain orientation, strong intermolecular interactions, as well as uniform film morphology of PDBF-co-TT. The optimum band gap of 1.39 eV and high hole mobility make this polymer a promising donor semiconductor for the solar cell application. When paired with a fullerene acceptor, PC 71BM, the resulting OPV devices show a high power conversion efficiency of up to 4.38% under simulated standard AM1.5 solar illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A donor-acceptor polymer semiconductor, PDQT, comprising diketopyrrolopyrrole (DPP) and β-unsubstituted quaterthiophene (QT) for organic thin film transistors (OTFTs) is reported. This polymer forms ordered layer-by-layer lamellar packing with an edge-on orientation in thin films even without thermal annealing. The strong intermolecular interactions arising from the fused aromatic DPP moiety and the DPP-QT donor-acceptor interaction facilitate the spontaneous self-assembly of the polymer chains into close proximity and form a large π-π overlap, which are favorable for intermolecular charge hopping. The well-interconnected crystalline grains form efficient intergranular charge transport pathways. The desirable chemical, electronic, and morphological structures of PDQT bring about high hole mobility of up to 0.97 cm2/(V·s) in OTFTs with polymer thin films annealed at a mild temperature of 100 °C and similarly high mobility of 0.89 cm2/(V·s) for polymer thin films even without thermal annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione or diketopyrrolopyrrole (DPP) is a useful electron-withdrawing fused aromatic moiety for the preparation of donor-acceptor polymers as active semiconductors for organic electronics. This study uses a DPP-furan-containing building block, 3,6-di(furan-2-yl)pyrrolo[3,4- c]pyrrole-1,4(2H,5H)-dione (DBF), to couple with a 2,2′-bithiophene unit, forming a new donor-acceptor copolymer, PDBFBT. Compared to its structural analogue, 3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBT), DBF is found to cause blue shifts of the absorption spectra both in solution and in thin films and a slight reduction of the highest occupied molecular orbital (HOMO) energy level of the resulting PDBFBT. Despite the fact that its thin films are less crystalline and have a rather disordered chain orientation in the crystalline domains, PDBFBT shows very high hole mobility up to 1.54 cm 2 V-1 s-1 in bottom-gate, top-contact organic thin film transistors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solution processable diketopyrrolopyrrole (DPP)-bithiophene polymers (PDBT) with long branched alkyl side chains on the DPP unit are synthesized. These polymers have favourable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels for the injection and transport of both holes and electrons. Organic thin film transistors (OTFTs) using these polymers as semiconductors and gold as source/drain electrodes show typical ambipolar characteristics with very well balanced high hole and electron mobilities (μ h = 0.024 cm 2 V -1 s -1 and μ e = 0.056 cm 2 V -1 s -1). These simple and high-performing polymers are promising materials for ambipolar organic thin film transistors for low-cost CMOS-like logic circuits.