105 resultados para TENSOR LEED


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 monozygotic (MZ) twins and 25 dizygotic (DZ) twin pairs (100 subjects total). First, the structural and DT scans were linearly co-registered. Structural MR scans were nonlinearly mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was measured between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quanititative genetic studies can take advantage of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twin studies are a major research direction in imaging genetics, a new field, which combines algorithms from quantitative genetics and neuroimaging to assess genetic effects on the brain. In twin imaging studies, it is common to estimate the intraclass correlation (ICC), which measures the resemblance between twin pairs for a given phenotype. In this paper, we extend the commonly used Pearson correlation to a more appropriate definition, which uses restricted maximum likelihood methods (REML). We computed proportion of phenotypic variance due to additive (A) genetic factors, common (C) and unique (E) environmental factors using a new definition of the variance components in the diffusion tensor-valued signals. We applied our analysis to a dataset of Diffusion Tensor Images (DTI) from 25 identical and 25 fraternal twin pairs. Differences between the REML and Pearson estimators were plotted for different sample sizes, showing that the REML approach avoids severe biases when samples are smaller. Measures of genetic effects were computed for scalar and multivariate diffusion tensor derived measures including the geodesic anisotropy (tGA) and the full diffusion tensors (DT), revealing voxel-wise genetic contributions to brain fiber microstructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. High-angular resolution diffusion imaging (HARDI) can resolve more complex diffusion geometries than standard DTI, including fibers crossing or mixing. The tensor distribution function (TDF) can be used to reconstruct multiple underlying fibers per voxel, representing the diffusion profile as a probabilistic mixture of tensors. Here we found that DTIderived mean diffusivity (MD) correlates well with actual individual fiber MD, but DTI-derived FA correlates poorly with actual individual fiber anisotropy, and may be suboptimal when used to detect disease processes that affect myelination. Analysis of the TDFs revealed that almost 40% of voxels in the white matter had more than one dominant fiber present. To more accurately assess fiber integrity in these cases, we here propose the differential diffusivity (DD), which measures the average anisotropy based on all dominant directions in each voxel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Magnetic resonance diffusion tensor imaging (DTI) shows promise in the early detection of microstructural pathophysiological changes in the brain. Objectives: To measure microstructural differences in the brains of participants with amnestic mild cognitive impairment (MCI) compared with an age-matched control group using an optimised DTI technique with fully automated image analysis tools and to investigate the correlation between diffusivity measurements and neuropsychological performance scores across groups. Methods: 34 participants (17 participants with MCI, 17 healthy elderly adults) underwent magnetic resonance imaging (MRI)-based DTI. To control for the effects of anatomical variation, diffusion images of all participants were registered to standard anatomical space. Significant statistical differences in diffusivity measurements between the two groups were determined on a pixel-by-pixel basis using gaussian random field theory. Results: Significantly raised mean diffusivity measurements (p<0.001) were observed in the left and right entorhinal cortices (BA28), posterior occipital-parietal cortex (BA18 and BA19), right parietal supramarginal gyrus (BA40) and right frontal precentral gyri (BA4 and BA6) in participants with MCI. With respect to fractional anisotropy, participants with MCI had significantly reduced measurements (p<0.001) in the limbic parahippocampal subgyral white matter, right thalamus and left posterior cingulate. Pearson's correlation coefficients calculated across all participants showed significant correlations between neuropsychological assessment scores and regional measurements of mean diffusivity and fractional anisotropy. Conclusions: DTI-based diffusivity measures may offer a sensitive method of detecting subtle microstructural brain changes associated with preclinical Alzheimer's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The arcuate fasciculus (AF), a white matter tract linking temporal and inferior frontal language cortices, can be disrupted in stroke patients suffering from aphasia. Using diffusion tensor imaging (DTI) tractography it is possible to track AF connections to neural regions associated with either phonological or semantic linguistic processing. The aim of the current study is to investigate the relationship between integrity of white matter microstructure and specific linguistic deficits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heritability of brain anatomical connectivity has been studied with diffusion-weighted imaging (DWI) mainly by modeling each voxel's diffusion pattern as a tensor (e.g., to compute fractional anisotropy), but this method cannot accurately represent the many crossing connections present in the brain. We hypothesized that different brain networks (i.e., their component fibers) might have different heritability and we investigated brain connectivity using High Angular Resolution Diffusion Imaging (HARDI) in a cohort of twins comprising 328 subjects that included 70 pairs of monozygotic and 91 pairs of dizygotic twins. Water diffusion was modeled in each voxel with a Fiber Orientation Distribution (FOD) function to study heritability for multiple fiber orientations in each voxel. Precision was estimated in a test-retest experiment on a sub-cohort of 39 subjects. This was taken into account when computing heritability of FOD peaks using an ACE model on the monozygotic and dizygotic twins. Our results confirmed the overall heritability of the major white matter tracts but also identified differences in heritability between connectivity networks. Inter-hemispheric connections tended to be more heritable than intra-hemispheric and cortico-spinal connections. The highly heritable tracts were found to connect particular cortical regions, such as medial frontal cortices, postcentral, paracentral gyri, and the right hippocampus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This issue on the genetics of brain imaging phenotypes is a celebration of the happy marriage between two of science's highly interesting fields: neuroscience and genetics. The articles collected here are ample evidence that a good deal of synergy exists in this marriage. A wide selection of papers is presented that provide many different perspectives on how genes cause variation in brain structure and function, which in turn influence behavioral phenotypes (including psychopathology). They are examples of the many different methodologies in contemporary genetics and neuroscience research. Genetic methodology includes genome-wide association (GWA), candidate-gene association, and twin studies. Sources of data on brain phenotypes include cortical gray matter (GM) structural/volumetric measures from magnetic resonance imaging (MRI); white matter (WM) measures from diffusion tensor imaging (DTI), such as fractional anisotropy; functional- (activity-) based measures from electroencephalography (EEG), and functional MRI (fMRI). Together, they reflect a combination of scientific fields that have seen great technological advances, whether it is the single-nucleotide polymorphism (SNP) array in genetics, the increasingly high-resolution MRI imaging, or high angular resolution diffusion imaging technique for measuring WM connective properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Population-based brain mapping provides great insight into the trajectory of aging and dementia, as well as brain changes that normally occur over the human life span.We describe three novel brain mapping techniques, cortical thickness mapping, tensor-based morphometry (TBM), and hippocampal surface modeling, which offer enormous power for measuring disease progression in drug trials, and shed light on the neuroscience of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI).We report the first time-lapse maps of cortical atrophy spreading dynamically in the living brain, based on averaging data from populations of subjects with Alzheimer's disease and normal subjects imaged longitudinally with MRI. These dynamic sequences show a rapidly advancing wave of cortical atrophy sweeping from limbic and temporal cortices into higher-order association and ultimately primary sensorimotor areas, in a pattern that correlates with cognitive decline. A complementary technique, TBM, reveals the 3D profile of atrophic rates, at each point in the brain. A third technique, hippocampal surface modeling, plots the profile of shape alterations across the hippocampal surface. The three techniques provide moderate to highly automated analyses of images, have been validated on hundreds of scans, and are sensitive to clinically relevant changes in individual patients and groups undergoing different drug treatments. We compare time-lapse maps of AD, MCI, and other dementias, correlate these changes with cognition, and relate them to similar time-lapse maps of childhood development, schizophrenia, and HIV-associated brain degeneration. Strengths and weaknesses of these different imaging measures for basic neuroscience and drug trials are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several genetic variants are thought to influence white matter (WM) integrity, measured with diffusion tensor imaging (DTI). Voxel based methods can test genetic associations, but heavy multiple comparisons corrections are required to adjust for searching the whole brain and for all genetic variants analyzed. Thus, genetic associations are hard to detect even in large studies. Using a recently developed multi-SNP analysis, we examined the joint predictive power of a group of 18 cholesterol-related single nucleotide polymorphisms (SNPs) on WM integrity, measured by fractional anisotropy. To boost power, we limited the analysis to brain voxels that showed significant associations with total serum cholesterol levels. From this space, we identified two genes with effects that replicated in individual voxel-wise analyses of the whole brain. Multivariate analyses of genetic variants on a reduced anatomical search space may help to identify SNPs with strongest effects on the brain from a broad panel of genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6 ≤ N ≤ 94) that optimized a spherical angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automated digital recordings are useful for large-scale temporal and spatial environmental monitoring. An important research effort has been the automated classification of calling bird species. In this paper we examine a related task, retrieval of birdcalls from a database of audio recordings, similar to a user supplied query call. Such a retrieval task can sometimes be more useful than an automated classifier. We compare three approaches to similarity-based birdcall retrieval using spectral ridge features and two kinds of gradient features, structure tensor and the histogram of oriented gradients. The retrieval accuracy of our spectral ridge method is 94% compared to 82% for the structure tensor method and 90% for the histogram of gradients method. Additionally, this approach potentially offers a more compact representation and is more computationally efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian housing sector contributes about a fifth of national greenhouse gas (GHG) emissions. GHG emissions contribute to climate change which leads to an increase in the occurrence or intensity of natural disasters and damage of houses. To ensure housing performance in the face of climate change, various rating tools for residential property have been introduced in different countries. The aim of this paper is to present a preliminary comparison between international and Australian rating tools in terms of purpose, use and sustainability elements for residential property. The methodologies used are to review, classify, compare and identify similarities and differences between rating tools. Two international tools, Building Research Establishment Environmental Assessment Methodology (BREEAM) (UK) and Leadership in Energy and Environmental Design for Homes (LEED-Homes) (USA), will be compared to two Australian tools, Green Star – Multi Unit Residential v1 and EnviroDevelopment. All four rating tools include management, energy, water and material aspects. The findings reveal thirteen elements that fall under three categories: spatial planning, occupants’ health and comfort, and environmental conditions. The variations in different tools may result from differences in local prevailing climate. Not all sustainability elements covered by international rating tools are included in the Australian rating tools. The voluntary nature of the tools implies they are not broadly applied in their respective market and that there is a policy implementation gap. A comprehensive rating tool could be developed in Australia to promote and lessen the confusion about sustainable housing, which in turn assist in improving the supply and demand of sustainable housing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design-build (DB) delivery method has been widely used in the United States due to its reputed superior cost and time performance. However, rigorous studies have produced inconclusive support and only in terms of overall results, with few attempts being made to relate project characteristics with performance levels. This paper provides a larger and more finely grained analysis of a set of 418 DB projects from the online project database of the Design-Build Institute of America (DBIA), in terms of the time-overrun rate (TOR), early start rate (ESR), early completion rate (ECR) and cost overrun rate (COR) associated with project type (e.g., commercial/institutional buildings and civil infrastructure projects), owners (e.g., Department of Defense and private corporations), procurement methods (e.g., ‘best value with discussion’ and qualifications-based selection), contract methods (e.g., lump sum and GMP) and LEED levels (e.g., gold and silver). The results show ‘best value with discussion’ to be the dominant procurement method and lump sum the most frequently used contract method. The DB method provides relatively good time performance, with more than 75% of DB projects completed on time or before schedule. However, with more than 50% of DB projects cost overrunning, the DB advantage of cost saving remains uncertain. ANOVA tests indicate that DB projects within different procurement methods have significantly different time performance and that different owner types and contract methods significantly affect cost performance. In addition to contributing to empirical knowledge concerning the cost and time performance of DB projects with new solid evidence from a large sample size, the findings and practical implications of this study are beneficial to owners in understanding the likely schedule and budget implications involved for their particular project characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use Bayesian model selection techniques to test extensions of the standard flat LambdaCDM paradigm. Dark-energy and curvature scenarios, and primordial perturbation models are considered. To that end, we calculate the Bayesian evidence in favour of each model using Population Monte Carlo (PMC), a new adaptive sampling technique which was recently applied in a cosmological context. The Bayesian evidence is immediately available from the PMC sample used for parameter estimation without further computational effort, and it comes with an associated error evaluation. Besides, it provides an unbiased estimator of the evidence after any fixed number of iterations and it is naturally parallelizable, in contrast with MCMC and nested sampling methods. By comparison with analytical predictions for simulated data, we show that our results obtained with PMC are reliable and robust. The variability in the evidence evaluation and the stability for various cases are estimated both from simulations and from data. For the cases we consider, the log-evidence is calculated with a precision of better than 0.08. Using a combined set of recent CMB, SNIa and BAO data, we find inconclusive evidence between flat LambdaCDM and simple dark-energy models. A curved Universe is moderately to strongly disfavoured with respect to a flat cosmology. Using physically well-motivated priors within the slow-roll approximation of inflation, we find a weak preference for a running spectral index. A Harrison-Zel'dovich spectrum is weakly disfavoured. With the current data, tensor modes are not detected; the large prior volume on the tensor-to-scalar ratio r results in moderate evidence in favour of r=0.